EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE

CPC NOTICE OF CHANGES 1671

DATE: MAY 1, 2025

PROJECT RP10485

The following classification changes will be effected by this Notice of Changes:

Action	Subclass	<u>Group(s)</u>
SCHEME:		
Titles Changed:	F16H	1/003, 1/125, 1/2809, 1/2836, 1/30, 2001/322, 2001/326, 2001/327, 1/48
	F16H	3/001, 3/002, 3/003, 3/006, 2003/007,
		2003/0807, 3/083, 3/385, 3/44, 3/663, 3/666, 3/721, 3/722, 3/724, 3/727, 3/74
	F16H	7/00,7/023,7/08,7/10,7/1209
	F16H	13/00
	F16H	15/00
	F16H	19/006, 19/0618, 19/0628, 19/0645
	F16H	21/00,21/365,21/50
	F16H	23/00
	F16H	25/12,2025/2059,2025/249
	F16H	27/02
	F16H	29/00
	F16H	31/002
	F16H	33/20
	F16H	2035/001,2035/006,35/008,35/06,35/10
	F16H	37/021,2037/023,2037/025,2037/026,
		37/027,2037/048,37/065,37/0813,
		37/0833,2037/0866,2037/0873,
		2037/088, 2037/0893, 37/10, 2037/101,
		2037/103,2037/104,37/14
	F16H	43/00
	F16H	45/00
	F16H	47/065, 47/07, 47/08, 47/085
	F16H	49/001,49/005
	F16H	53/00,53/025
	F16H	55/06, 55/10, 2055/178, 55/48
	F16H	2057/0068,2057/0075,2057/0081,
		2057/0235, 57/04, 57/0409, 57/041,
		57/0423, 57/0424, 57/0432, 57/0434,
		57/0457, 57/0458, 57/0475, 57/0486,
		57/0493
	F16H	59/00, 59/0217, 2059/0221, 59/041,
		59/042, 59/044, 2059/047, 2059/048,
		2059/065, 2059/082, 2059/088, 59/44,
		2059/683,2059/725,2059/743
	F16H	61/0025,61/0059,61/02,61/0202,
		61/0206, 61/0248, 61/0262, 61/0267,
		61/0274, 2061/0474, 61/12, 2061/1252,
		61/16,61/2807,61/32,61/42,2061/6614,
		61/66236

DATE: MAY 1, 2025

Action	Subclass	Group(s)
	F16H	2063/005,63/04,63/08,63/24,63/28,
		63/3069, 2063/3093, 63/38
	F16H	2306/54
Indents Changed:	F16H	2057/0325
	F16H	2059/088
	F16H	2061/0034
Warnings Deleted:	F16H	SUBCLASS
DEFINITIONS:		
Definitions Deleted: (no frozen (F) symbol definitions should be deleted)	F16H	35/00
	F16H	61/68
Definitions New:	F16H	1/003, 1/04, 1/06, 1/08, 1/10, 1/12, 1/125,
	-	1/145, 1/163, 1/166, 1/18, 1/20, 1/203,
		1/206, 1/22, 1/222, 1/225, 1/227, 1/24,
		1/26, 1/28, 1/2809, 1/2818, 1/2827,
		1/2836, 1/2845, 1/2854, 1/2863,
		2001/2872, 2001/2881, 2001/289, 1/30,
		1/321,2001/322,2001/323,2001/324,
		2001/325,2001/326,2001/327,2001/328,
		1/34, 1/36, 1/46, 1/48
	F16H	3/001, 3/002, 3/003, 3/006, 2003/00/,
		2003/008, 3/04, 3/06, 3/08, 2003/0803,
		2003/0807, 2003/0811, 2003/0818, 2003/0822, 2003/0826, 2/082, 2/085
		2/087 $2/080$ $2/081$ $2/081$ $2/083$, $3/083$, $3/087$ $2/080$ $2/081$ $2/081$ $2/083$
		2003/0931 2003/0933 2003/0935
		2003/0936 2003/0938 3/095 3/097
		3/10, 2003/123, 3/126, 3/14, 3/145, 3/16
		3/20, 3/24, 3/30, 3/34, 3/363, 3/366.
		3/385, 3/40, 3/42, 3/423, 3/44, 2003/442,
		2003/445, 2003/447, 3/50, 3/54, 3/56,
		3/58, 3/60, 3/64, 3/66, 3/663, 3/666, 3/68,
		3/70, 3/72, 3/721, 3/722, 3/724, 3/725,
		3/727, 3/728, 3/74, 3/76, 3/78
	F16H	7/023,7/08,7/10,7/1209
	F16H	15/48,15/50
	F16H	2019/0686
	F16H	21/18,21/22,21/24,21/26,21/28,21/30,
		21/32,21/34,21/36,21/365
	F16H	25/02,25/04,25/06,2025/063,25/08,
		25/122,25/125,2025/12/,25/14,25/16,
	E16U	25/18,25/185,25/186,2025/204,25/2056
		2//02,2//043,2//06,2//08
	F16H	27/02, 27/04, 27/12, 27/10 21/002 21/003 21/004 21/005 21/004
	1,1011	31/002, 31/003, 31/004, 31/003, 31/000, 31/007, 31/009
	F16H	33/20
	F16H	2035/001 2035/103 2035/106
	F16H	37/02 37/022 2037/023 2037/025
	1 1011	2037/026,2037/028,37/04,37/041,

DATE: MAY 1, 2025

Action	<u>Subclass</u>	Group(s)
		37/042,2037/044,2037/045,37/046,
		2037/047, 2037/048, 2037/049, 37/065,
		37/0806, 37/0813, 37/082, 37/0826,
		37/0833, 37/084, 37/0846, 37/0853,
		37/086,2037/0866,2037/0873,2037/088,
		2037/0886,2037/0893,37/10,2037/101,
		2037/102, 2037/103, 2037/104, 37/122,
		37/124, 37/126, 2037/128, 37/14, 37/16
	F16H	2045/007,2045/0247,2045/0278,
		2045/0284,2045/0294
	F16H	47/02,2047/025,47/04,2047/045,47/06,
		47/065, 47/07, 47/08, 47/085, 47/10,
		47/12
	F16H	49/001.49/005
	F16H	55/08 55/283 55/285 55/286 55/288
	11011	55/48.55/563
	F16H	57/0006 2057/0068 2057/0075
	11011	2057/0081_57/01_2057/014_2057/016
		57/02 57/02004 2057/0203 2057/02078
		57/021 57/022 57/023 2057/0235
		57/029 57/033 57/035 57/037 57/038
		57/039 57/0405 57/0423 57/0424
		57/0432 57/0446 57/0449 57/0458
		2057/085 57/12
	F16H	50/02 50/0217 50/041 50/042 50/044
	11011	2059/047 2059/048 59/14 2059/186
		2037/047, 2037/048, 37/14, 2037/180, 50/22, 50/36, 2050/443, 50/48, 2050/683
		2059/7/3
	E16U	
	гтоп	61/0225, 61/0051, 61/0202, 61/0200, 61/0248, 61/0262, 61/0267, 61/0274
		01/0248, 01/0202, 01/0207, 01/0274, 2061/0474, 2061/1252, 2061/146, 61/21
		2001/04/4,2001/1252,2001/140,01/21,
	E16U	
	гіоп	2003/003,03/04,03/08,03/24,03/28,
		63/3069
Definitions Modified:	FIGH	SUBCLASS
	FIGH	1/00, 1/006, 1/14, 1/16, 1/32
	FIGH	3/00, 3/426
	F16H	7/00
	F16H	9/12
	F16H	13/00
	F16H	15/00
	F16H	19/00, 19/005, 19/006, 19/025, 19/0604,
		2019/0609, 2019/0613, 19/0618, 19/0622,
		19/0628, 19/0636, 19/064, 19/0645,
		19/065, 19/0654, 19/0663, 19/0672,
		2019/069,2019/0695
	F16H	21/00,21/04,21/14,21/20
	F16H	23/00
	F16H	25/00, 25/10, 25/12, 25/20, 2025/2059,
		25/24,2025/249
	F16H	27/00

DATE: MAY 1, 2025

PROJECT RP10485

Action	<u>Subclass</u>	Group(s)
	FICI	20/00
	FIOH	29/00
	FI6H	31/00
	FI6H	33/00
	F16H	2035/003,2035/005,2035/006,35/008,
		35/02,35/06,35/10
	F16H	37/00, 37/021, 37/027, 37/06, 37/08,
		37/12
	F16H	43/00
	F16H	45/00
	F16H	48/00, 48/05, 48/14, 48/19, 48/26, 48/27,
		48/28, 48/285, 48/29, 48/295, 48/32,
		48/36,48/40
	F16H	51/00
	F16H	53/00,53/025
	F16H	55/00, 55/06, 55/10, 55/17, 55/52
	F16H	57/00,2057/005,2057/0087,2057/018,
		2057/02034, 2057/02091, 57/025, 57/04,
		57/0408, 57/041, 57/0412, 57/0417,
		57/0434, 57/0436, 57/0445, 57/0447,
		57/045, 57/0457, 57/0475, 57/0476,
		57/048,2057/087
	F16H	59/00,2059/0221,2059/023,2059/0239,
		2059/0243,2059/026
	F16H	61/00,61/0021,2061/0037,2061/004,
		61/0059,2061/0071,61/02,61/04,61/06,
		61/08,61/12,2061/1204,61/16,61/18,
		61/20, 61/22, 2061/226, 61/28, 61/30,
		61/32, 61/34, 61/4078, 61/42, 2061/6607,
		61/662,61/66227,61/66231,61/66236,
		61/6624, 61/66245, 61/6625, 61/66254,
		61/66259, 61/66263, 61/66268, 61/66272,
		2061/66295,61/664,61/6645,61/6646,
		61/6647, 61/6648, 61/6649
	F16H	63/00,2063/3046,2063/3093

No other subclasses/groups are impacted by this Notice of Changes.

This Notice of Changes includes the following [Check the ones included]:

1. CLASSIFICATION SCHEME CHANGES

- A. New, Modified or Deleted Group(s)
- B. New, Modified or Deleted Warning(s)
- C. New, Modified or Deleted Note(s)
- D. New, Modified or Deleted Guidance Heading(s)

2. DEFINITIONS

- A. New or Modified Definitions (Full definition template)
- B. Modified or Deleted Definitions (Definitions Quick Fix)

DATE: MAY 1, 2025

- 3. REVISION CONCORDANCE LIST (RCL)
- 4. CHANGES TO THE CPC-TO-IPC CONCORDANCE LIST (CICL)
- 5. CHANGES TO THE CROSS-REFERENCE LIST (CRL)

EUROPEAN PATENT OFFICE U.S. PATENT AND TRADEMARK OFFICE

CPC NOTICE OF CHANGES 1671

DATE: JANUARY 1, 2025

PROJECT RP10485

1. CLASSIFICATION SCHEMECHANGES

A. New, Modified or Deleted Group(s)

SUBCLASS F16H-GEARING

Type*	<u>Symbol</u>	Indent Level	<u>Title</u>	<u>Transferred to</u> #
		Number of	<u>"CPC only" text should normally be</u>	
		$\frac{\text{dots}(\text{e.g.} 0, 1,}{2})$	enclosed in {curly brackets}**	
М	F16H 1/003	1	{Unidirectionally torque-transmitting	
			toothed gearing}	
М	F16H 1/125	4	{comprising spiral gears only}	
М	F16H 1/2809	2	{with means for equalising the distribution of load on the planet gears}	
М	F16H 1/2836	3	{by a llowing limited movement of the planet gears relative to the planet carrier or by using free floating planet gears}	
М	F16H 1/30	2	in which an orbital gear has an axis crossing the main axis of the gearing and has helical teeth or is a worm	
U	F16H 1/321	3	{the orbital gear being nutating}	
М	F16H 2001/322	3	{comprising at least one universal joint or flexible coupling, e.g. a Cardan joint}	
М	F16H 2001/326	3	{comprising linear guiding means guiding at least one orbital gear}	
М	F16H 2001/327	3	{with the orbital gear having internal gear teeth}	
U	F16H 2001/328	3	{comprising balancing means}	
М	F16H 1/48	2	Special means compensating for misa lignment of axes {, e.g. for equalising distribution of load on the face width of the teeth}	
М	F16H 3/001	1	{convertible for varying the gear ratio, e.g. for selecting one of several shafts as the input shaft}	
М	F16H 3/002	1	{using gears having teeth movable out of mesh (F16H 3/16, F16H 3/20 and F16H 3/42 take precedence)}	
М	F16H 3/003	1	{the gear ratio being changed by inversion of torque direction}	
M	F16H 3/006	1	{power being selectively transmitted by parallel flow paths, e.g. dual clutch transmissions}	

DATE: MAY 1, 2025

М	F16H 2003/007	2	{with two flow paths, one being directly connected to the input, the other being connected to the input through a clutch}
М	F16H 2003/0807	3	{with gear ratios in which the power is transferred by axially coupling idle gears to each other}
М	F16H 3/083	3	with radially acting and axially controlled clutching members, e.g. sliding keys
М	F16H 3/385	4	{with braking means}
М	F16H 3/44	1	using gears having orbital motion
М	F16H 3/663	4	{with conveying rotary motion between axially spaced orbital gears, e.g. a stepped orbital gear or Ravigneaux }
М	F16H 3/666	4	{with intermeshing orbital gears (F16H 3/663 takes precedence)}
М	F16H 3/721	3	{the secondary drive being an energy dissipating device, e.g. regulating brake, in order to vary speed continuously}
М	F16H 3/722	4	{the secondary drive being a fluid throttle}
М	F16H 3/724	3	{using externally powered electric machines}
М	F16H 3/727	3	{with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path}
М	F16H 3/74	2	Complexes, not using a ctuatable speed- changing or regulating members, e.g. with gear ratio determined by free play of frictional or other forces
М	F16H 7/00	0	Gearings for conveying rotary motion by endless flexible members (specific for conveying rotary motion with variable gear ratio or for reversing rotary motion F16H 9/00)
М	F16H 7/023	2	{with belts having a toothed contact surface or regularly spaced bosses or hollows for slipless or nearly slipless meshing with complementary profiled contact surface of a pulley}
М	F16H 7/08	1	Means for varying tension of belts, ropes or chains (pulleys of adjustable construction F16H 55/52)
Μ	F16H 7/10	2	by adjusting the axis of a pulley
Μ	F16H 7/1209	4	{with vibra tion damping means}
М	F16H13/00	0	Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
М	F16H 15/00	0	Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary

DATE: MAY 1, 2025

			motion, by friction between rotary	
			members (control of change-speed or	
			reversing-gearings conveying rotary motion	
			F16H 59/00-F16H 63/00)	
М	F16H 19/006	3	{for converting reciprocating motion into	
			another reciprocating motion}	
М	F16H 19/0618	3	{the flexible member, e.g. cable, being	
			wound on a drum or thread for creating	
			axial movement parallel to the drum or thread	
м	E1(1110/0(20	4	(the floor it is more than a second in the inter-	
M	F16H 19/0628	4	{the flexible member, e.g. a cable, being	
			unwound with another string to create	
			reciprocating movement of the flexible	
			member}	
М	F16H 19/0645	3	{the flexible push or pull member having	
			guiding means, i.e. the flexible member	
			being supported at least partially by a guide	
			to transmit the reciprocating movement (the	
			chain F16H 19/0636)	
м	E16H 21/00	0	Coorings comprising primarily only links	
111	F10H 21/00	0	or levers with or without slides (F16H	
			23/00 takes precedence)	
М	F16H 21/365	5	{with orbital gearing having a ratio of 2:1	
	1101121/000	C C	between central gear and orbital gear}	
М	F16H 21/50	2	for interconverting rotary motion and	
			reciprocating motion	
М	F16H 23/00	0	Wobble-plate gearings; Oblique-crank	
			gearings	
М	F16H 25/12	2	with reciprocation a long the axis of	
			rotation, e.g. gearings with helical grooves	
			and automatic reversal	
М	F16H 2025/2059	3	{Common movement by two screws or two	
			nuts, e.g. two connected screws with	
M	E16H 2025/240	Λ	(Materials are continued for some state)	
IVI	F10H 2025/249	4	{ivia teriais or coatings for screws or nuts}	
IVI	F16H 2 //02	1	with at least one reciprocating or oscillating transmission member	
М	F16H 20/00	0	Gao rings for conveying rotory motion with	
11/1	1101129/00	U	intermittently-driving members e g with	
			freewheelaction	
М	F16H 31/002	2	{Hand-driven ratchets}	
М	F16H 33/20	1	for interconversion, based essentially on	
		-	inertia, of rotary motion and reciprocating	
			or oscillating motion	
М	F16H 2035/001	1	{Gearings with eccentrically mounted	
			gears, e.g. for cyclically varying ratio}	

DATE: MAY 1, 2025

м	E1 (11 2025/00 (1		
M	F16H 2035/006	1	{Gearings or mechanisms for stopping or	
			limiting movement, e.g. stopping a	
			movement after a few turns}	
М	F16H 35/008	1	{for variation of rotational phase	
			relationship, e.g. angular relationship	
			between input and output shaft}	
М	F16H 35/06	1	Gearings designed to allow relative	
141	1101135/00	1	movement between supports thereof	
			without ill effects (special means	
			compensating for misalignment of	
			axes F16H 1/26 F16H 1/48)	
м	F1(1125/10	1		
M	F16H 35/10	1	Arrangements or devices for absorbing	
			overload or preventing damage by overload	
М	F16H 37/021	2	{toothed gearing combined with	
			continuously variable friction gearing}	
М	F16H 2037/023	3	{the combined gearing being provided with	
			at least two forward and one reverse ratio in	
			a serially arranged sub-transmission}	
М	F16H 2037/025	3	{having continuously variable friction	
		-	gearing, i.e. CVT, in which the ratio	
			coverage is used more than once to produce	
			the overall transmission ratio coverage, e.g.	
			by shift to end of range then change ratio	
			in sub-transmission and shift CVT through	
			range once again }	
м	E16U 2027/026	2	(Leventerwith a entionlan features of	
IVI	F10H 2037/020	3	La yours with particular realures of	
			reversing gear, e.g. to achieve compact	
М	F16H 37/027	2	{toothed gearing combined with a gear	
			using endless flexible members for	
			reversing rotary motion only (F16H 37/06	
			takes precedence)}	
Μ	F16H 2037/048	3	{Combinations of parallel shaft and orbital	
			motion gearing, wherein the orbital motion	
			gearing has more than one connection with	
			the parallel shaft gearing}	
U	F16H 2037/049	3	{Forward-reverse units with forward and	
			reverse gears for a chieving multiple	
			forward and reverse gears, e.g. for working	
			machines}	
М	F16H 37/065	3	{with a plura lity of driving or driven shafts	
		-	(F16H37/0806 takes precedence)}	
U	F16H 37/08	3	with differential gearing	
M	F16H 37/0813	5	{with only one input shaft}	
M	F16U 27/0022		with a rean appoint for dividing to many	
11/1	11011 3 //0833	4	with a frangements for unviding torque	
			i.e. with two or more internal nower other	
	F1 (11 0007 /00 ()	-	(D 1)	
M	F16H 2037/0866	6	{Power-split transmissions with	
			distributing differentials, with the output of	
			the UVI connected or connectable to the	
			output shaft}	

DATE: MAY 1, 2025

М	F16H 2037/0873	7	{with switching means, e.g. to change ranges}	
М	F16H 2037/088	6	{Power-split transmissions with summing differentials, with the input of the CVT connected or connectable to the input shaft}	
М	F16H 2037/0893	6	{characterised in that the ratio of the continuously variable transmission is different from zero when the output shaft speed is zero}	
Μ	F16H 37/10	4	at both ends of intermediate shafts	
М	F16H 2037/101	5	{Power-split transmissions with one differential at each end of a continuously variable transmission, i.e. CVT}	
М	F16H 2037/103	5	{Power-split transmissions with each end of a CVT connected or connectable to a planetary gear set having four or more connections, e.g. a Ravigneaux set}	
М	F16H 2037/104	5	{Power-split transmissions with at least one end of a CVT connected or connectable to two or more differentials}	
М	F16H 37/14	2	the movements of two or more independently-moving members being combined into a single movement	
М	F16H 43/00	0	Other fluid gearing, e.g. with oscillating input or output	
М	F16H 45/00	0	Combinations of fluid gearings for conveying rotary motion with couplings or clutches (gearing systems consisting of a plura lity of hydrokinetic units operating alternatively F16H41/22)	
М	F16H 47/065	2	{the mechanical gearing comprising gearing of the friction or endless flexible member type}	
М	F16H 47/07	2	using two or more power-transmitting fluid circuits (F16H 47/10 takes precedence)	
М	F16H 47/08	2	the mechanical gearing being of the type with members having orbital motion	
М	F16H 47/085	3	{with at least two mechanical connections between the hydrokinetic gearing and the mechanical gearing}	
U	F16H 48/32	3	using fluid pressure a ctuators	
U	F16H 48/36	1	characterised by intentionally generating speed difference between outputs	
U	F16H 48/40	2	characterised by features of the rotating cases	
М	F16H 49/001	1	{Wave gearings, e.g. harmonic drive transmissions}	
М	F16H 49/005	1	{Magnetic gearings with physical contact between gears}	

DATE: MAY 1, 2025

М	F16H 53/00	0	Cams or cam-followers, e.g. rollers for gearing mechanisms	
М	F16H 53/025	2	(characterised by their construction e a	
1 V1	1101133/023	2	a ssembling or manufacturing features}	
М	F16H 55/06	2	Use of materials: Use of treatments of	
			toothed members or worms to a ffect their	
			intrinsic material properties	
U	F16H 55/08	2	Profiling	
М	F16H 55/10	2	Constructively simple tooth shapes, e.g.	
			shaped as pins, as balls	
М	F16H 2055/178	3	{combined with clutch means, e.g. gear	
TT	F1 (11 2055/2()	2		
U	F16H 2055/366	3	{with means providing resilience or	
			vibration damping}	
M	F16H 55/48	3	manufactured exclusively or in part of non-	
			metallic material, e.g. r_1 ation (E161155/29) E161155/20 E16115	
			5/46 tolsonroodonoo)	
М	E1(112057/00(9	1	(Demoking of the manifold in a horizon in a manifold in the second secon	
IVI	F10H 2057/0008	1	(Repairing of transmissions by using repair	
М	F1 (11 20 57 /0075	1	$\{\mathbf{K}_{\mathbf{I}}, \mathbf{K}_{\mathbf{I}}, $	
М	F16H 2057/0075	1	{Modifying standard transmissions from	
			for a dditional m tion	
М	F1 (11 20 57 /0001	1		
IVI	F16H 2057/0081	1	(Fixing of, or a dapting to transmission	
	F1 (11 00 55 /0005	2		
М	F16H 2057/0235	3	{specially a dapted to a llow easy	
TT	E1 (11 55/000		accessibility and repair}	
0	F16H 5 //032	2	characterised by the materials used	
M	F16H 2057/0325	3	{Moulded casings made from plastic}	
M	F16H 57/04	1	Features relating to lubrication or cooling	
			{or heating} (control of lubrication or	
			cooling in hydrostatic gearing	
	E1 (11 57/0400	2	$\frac{1101101/4103}{(T-1)}$	
U	F16H 57/0408	2	{Exchange, draining or filling of	
		2		
М	F16H 57/0409	2	{characterised by increasing efficiency, e.g.	
14	E1 (11 57/041	2	Overting splash losses}	
M	F16H 5 //041	2	{Coatings or solid lubricants, e.g. anti-seize	
T T		4	ayers or pastes}	
U	F16H 57/0417	4	{Heat exchangers a dapted or integrated in	
			the gearing}	
М	F16H 57/0423	4	{Lubricant guiding means mounted or	
			supported on the casing, e.g. shields or	
			barries for collecting lubricant, tubes or	
		4		
М	F16H 57/0424	4	{Lubricant guiding means in the wall of or	
			channels holes?	

DATE: MAY 1, 2025

М	F16H 57/0432	3	{Lubricant guiding means on or inside shift rods or shift forks}	
М	F16H 57/0434	2	{relating to lubrication supply, e.g. pumps; Pressure control}	
U	F16H 57/0436	3	{Pumps}	
U	F16H 57/0445	3	{for supply of different gearbox casings or sections}	
U	F16H 57/0447	2	{Control of lubricant levels, e.g. lubricant level control dependent on temperature}	
U	F16H 57/0449	3	{Sensors or indicators for controlling the fluid level}	
М	F16H 57/0457	2	{Splash lubrication}	
М	F16H 57/0458	2	{Oil-mist or spray lubrication; Means to reduce foam formation}	
М	F16H 57/0475	3	{Engine and gearing, i.e. joint lubrication or cooling or heating thereof}	
М	F16H 57/0486	4	{with fixed gear ratio (axle or inter-axle differentials F16H 57/0483)}	
М	F16H 57/0493	3	{Gearings with spur or bevel gears (a xle or inter-a xle differentials with spur or bevel gears F16H 57/0483)}	
U	F16H 57/12	1	Arrangements for a djusting or for taking-up backlash not provided for elsewhere	
М	F16H 59/00	0	Control inputs to {control units of} change- speed-or reversing-gearings for conveying rotary motion	
М	F16H 59/0217	2	{with electric switches or sensors not for gear or range selection, e.g. for controlling auxiliary devices}	
М	F16H2059/0221	2	{for selecting modes, e.g. sport, normal, economy}	
М	F16H 59/041	3	{consisting of a final output mechanism, e.g. ratio selector being directly linked to a shift fork}	
М	F16H 59/042	3	{comprising a final a ctuating mechanism}	
М	F16H 59/044	3	{consisting of electrical switches or sensors}	
М	F16H 2059/047	3	{with essentially straight linear movement for gear selection, e.g. straight selection movement using detent mechanism for improving feeling}	
М	F16H 2059/048	3	{with means for unlocking select or shift movement to allow access to reverse gear position}	
М	F16H 2059/065	4	{Inching pedals for setting the ratio of a hydrostatic transmission}	
М	F16H 2059/082	3	{for different transmission modes}	
U	F16H 2059/087	4	{Winter mode, e.g. to start on snow or slippery surfaces}	

DATE: MAY 1, 2025

М	F16H 2059/088	4	{Fast forward-reverse-sequence, e.g. rocking mode}	
М	F16H 59/44	2	dependent on machine speed {, e.g. the vehicle speed} (F16H 59/46 takes precedence)	
U	F16H 2059/443	3	{Detecting travel direction, e.g. the forward or reverse movement of the vehicle}	
U	F16H 59/48	1	Inputs being a function of acceleration	
М	F16H 2059/683	2	{Sensing pressure in control systems or in fluid-controlled devices, e.g. by pressure sensors}	
М	F16H 2059/725	3	{Sensing or calculating temperature of oil in friction devices, e.g. wet clutches, to prevent overheating of friction linings}	
М	F16H 2059/743	2	{using engine performance or power for control of gearing}	
U	F16H61/00	0	Control functions within {control units of} change-speed- or reversing-gearings for conveying rotary motion {; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing}	
М	F16H 61/0025	2	{Supply of control fluid; Pumps therefor}	
U	F16H 61/0031	3	{using a uxiliary pumps, e.g. pump driven by a different power source than the engine}	
М	F16H 2061/0034	3	{Accumulators for fluid pressure supply; Control thereof}	
М	F16H 61/0059	1	{Braking of gear output shaft using simultaneous engagement of engaging means, e.g. clutches or brakes, applied for different gear ratios}	
М	F16H 61/02	1	characterised by the signals used	
М	F16H 61/0202	2	{the signals being electric}	
М	F16H 61/0206	4	{Layout of electro-hydraulic control circuits, e.g. arrangement of valves}	
М	F16H 61/0248	3	{Control units where shifting is directly initiated by the driver, e.g. semi-automatic transmissions}	
М	F16H 61/0262	2	{the signals being hydraulic}	
М	F16H 61/0267	4	{Layout of hydraulic control circuits, e.g. arrangement of valves}	
М	F16H 61/0274	3	{Control units where shifting is directly initiated by the driver, e.g. semi-automatic transmissions}	
М	F16H 2061/0474	2	{by smoothing engagement or release of positive clutches; Methods or means for shock free engagement of dog clutches}	

DATE: MAY 1, 2025

Μ	F16H 61/12	1	Detecting malfunction or potential	
			malfunction, e.g. fail safe (in control of	
			hydrostatic gearing F16H61/4192) {;	
			Circumventing or fixing failures}	
М	F16H 2061/1252	2	{Fail safe valves}	
М	F16H 61/16	1	Inhibiting {or initiating} shift during	
			unfavourable conditions {, e.g. preventing	
			forward-reverse shift at high vehicle speed,	
			preventing engine overspeed } (F16H 61/18	
			takes precedence)	
Μ	F16H 61/2807	3	{using electric control signals for shift	
			actuators, e.g. electro-hydraulic control	
			therefor (F16H61/30, F16H61/32 take	
			precedence)}	
М	F16H 61/32	3	Electric motors {, actuators or related	
			electrical control means} therefor	
М	F16H 61/42	3	involving a djustment of a pump or motor	
			with a djustable output or capacity	
М	F16H 2061/6614	3	{Control of ratio during dual or multiple	
			pass shifting for enlarged ratio coverage }	
М	F16H 61/66236	4	{using electrical or electronic sensing or	
			controlmeans}	
U	F16H 61/66254	3	{controlling of shifting being influenced by	
			a signal derived from the engine and the	
			main coupling}	
U	F16H 61/6648	3	{controlling of shifting being influenced by	
			a signal derived from the engine and the	
м	E16U2062/005	1	(Dree scenchied scenchift units for	
IVI	F10H 2003/003	1	{Preassembled gear shift units for	
м	E16U62/04	2	a single final extrust masher inthe hairs	
IVI	F10H 03/04	2	a single finatoutput mechanism being	
			mechanism	
м	E16H 63/08	2	Multiple final output mechanisms being	
111	1101105/08	2	moved by a single common final actuating	
			mechanism	
м	F16H 63/24	2	each of the final output mechanisms being	
111	1101103/24	2	moved by only one of the various final	
			a ctuating mechanisms	
М	F16H 63/28	2	two or more final actuating mechanisms	
		_	moving the same final output mechanism	
М	F16H 63/3069	3	{Interrelationship between two or more	
			finaloutputmechanisms}	
М	F16H 2063/3093	3	{Final output elements, i.e. the final	
			elements to establish gear ratio, e.g.	
			coupling sleeves or other means	
			establishing coupling to shaft}	
Μ	F16H 63/38	3	Detents	
М	F16H 2306/54	2	Synchronising engine speed to transmission	
			input speed	

DATE: MAY 1, 2025

PROJECT RP10485

*N = new entries where reclassification into entries is involved; C = entries with modified file scope where reclassification of documents from the entries is involved; Q = new entries which are firstly populated with documents via administrative transfers from deleted (D) entries. Afterwards, the transferred documents into the Q entry will either stay or be moved to more appropriate entries, as determined by intellectual reclassification; T = existing entries with enlarged file scope, which receive documents from C or D entries, e.g. when a limiting reference is removed from the entry title; M = entries with no change to the file scope (no reclassification); D = deleted entries; F = frozen entries will be deleted once reclassification of documents from the entries is completed; U = entries that are unchanged.

NOTES:

- **No {curly brackets} are used for titles in CPC only <u>subclasses</u>, e.g. C12Y, A23Y; 2000 series symbol titles of groups found at the end of schemes (orthogonal codes); or the Y section titles. The {curly brackets} <u>are</u> used for 2000 series symbol titles found interspersed throughout the main trunk schemes (breakdown codes).
- U groups: it is obligatory to display the required "anchor" symbol (U group), i.e. the entry immediately preceding a new group or an array of new groups to be created (in case new groups are not clearly subgroups of C-type groups). Always include the symbol, indent level and title of the U group in the table above.
- All entry types should be included in the scheme changes table a bove for better understanding of the overall scheme change picture. Symbol, indent level, and title are required for all types.
- "Transferred to" column <u>must</u> be completed for all C, D, F, and Q type entries. F groups will be deleted once reclassification is completed.
- When multiple symbols are included in the "Transferred to" column, a void using ranges of symbols in order to be as precise as possible.
- For a dministrative transfer of documents, the following text should be used: "<administrative transfer to XX>", "<a dministrative transfer to XX and YY simultaneously>", or "<a dministrative transfer to XX, YY, ...and ZZ simultaneously>" when administrative transfer of the same documents is to more than one place.
- Administrative transfer to main trunk groups is assumed to be the source allocation type, unless otherwise indicated.
- Administrative transfer to 2000/Y series groups is a ssumed to be "additional information".
- If needed, instructions for allocation type should be indicated within the angle brackets using the abbreviations "ADD" or "INV": <a dministrative transfer to XX ADD>, <a dministrative transfer to XX INV>, or <a dministrative transfer to XX ADD, YY INV, ... and ZZ ADD simultaneously>.
- In certain situations, the "D" entries of 2000-series or Y-series groups may not require a destination ("Transferred to") symbol, however it is required to specify "<no transfer>" in the "Transferred to" column for such cases.
- For finalization projects, the deleted "F" symbols should have <no transfer> in the "Transferred to" column.
- For more details about the types of scheme change, see CPC Guide.

DATE: MAY 1, 2025

PROJECT RP10485

B. <u>New, Modified or Deleted Warning(s)</u>

SUBCLASS F16H - GEARING

<u>Type</u> *	<u>Location</u>	<u>Old Warning</u>	New/Modified Warning
D			
D	FIGH	{In this subclass non-limiting	Delete entire warning
		references (in the sense of	
		paragraph 39 of the Guide to	
		the IPC) may still be displayed	
		in the scheme.}	

*N = new warning, M = modified warning, D = deleted warning

NOTE: The "Location" column only requires the symbol PRIOR to the location of the warning. No further directions such as "before" or "after" are required.

PROJECT RP10485

2. A. DEFINITIONS (new)

F16H 1/003

Definition statement

This place covers:

Toothed gearings for conveying rotary motion in which torque may be transmitted from the input to the output in only one input rotation direction, e.g. a clockwise input rotation is possible whereas a counter-clockwise input rotation is blocked.

Illustrative examples of subject matter classified in this place:

1a.

Figure 1a illustrates an example in which clockwise rotation is possible.

PROJECT RP10485

1b.

Figure 1b illustrates an example in which counter clockwise rotation is blocked.

2a.

DATE: MAY 1, 2025

PROJECT RP10485

2b.

Figures 2a and 2b illustrate an example in which rotation is allowed in only one direction.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings or mechanisms preventing back-driving	F16H 2035/005
Mechanically driven watches or clocks including devices	G04B 11/02
allowing the motion of a rotatable part in only one direction	

F16H 1/04

Definition statement

This place covers:

Non-orbital toothed gearing wherein no more than a total of two intermeshing members are used to convey rotary motion.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed	F16H 1/20
gear ratio, without gears having orbital motion, involving	
more than two intermeshing members	

F16H 1/06

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with parallel axes.

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a gearing having two parallel axes and involving only two intermeshing members (1) and (2). The latter are formed as spur gears.

DATE: MAY 1, 2025

PROJECT RP10485

2.

Figure 2 illustrates a gearing having two parallel axes and involving only two intermeshing members (1) and (2). The latter are formed as face gears.

F16H 1/08

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with parallel axes, the members having helical, herringbone or like teeth.

Illustrative examples of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

1.

Figure 1 illustrates a helical gearing having two parallel axes and involving only two intermeshing members (a) and (b). The latter having helical teeth.

PROJECT RP10485

Figure 2 illustrates a double helical gearing having two parallel axes and involving only two intermeshing members (3) and (4). Each of the latter having two rows (1) and (2) of oppositely inclined helical teeth.

PROJECT RP10485

Figure 3 illustrates a herringbone gearing having parallel axes (I) and (II) and involving only two intermeshing members (a1) and (a2). The latter having herringbone teeth.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed	F16H 1/206
gear ratio, without gears having orbital motion, involving	
more than two intermeshing members, characterised by	
the driving or driven member being composed of two or	
more gear wheels	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/10

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with parallel axes, one of the members being internally toothed.

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing having two parallel axes and involving only two intermeshing members (1) and (2). Member (1) is internally toothed.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Turntables	iе	structure	rotatable	ahout	360°	РЧ	slew drives	E02E 9/121
Turnabics,	1.0.	Suuciuic	Totalabic	about	000,	C.g.		

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/12

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes.

Illustrative example of subject matter classified in this place:

Figure 1a illustrates a crown gearing involving only two intermeshing members (1) and (2). Axes (3) and (4) are intersecting and non-parallel. Gears (1) and (2) are not conical.

PROJECT RP10485

F16H 1/125

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, comprising spiral gears.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a gearing involving only two intermeshing members (4) and (8), with non-parallel axes (2) and (3). Intermeshing member (4) has spiral teeth. The gearing does not have conical gears.

2.

Figure 2 illustrates a gearing involving only two intermeshing members (20) and (52), with non-parallel and intersecting axes (F) and (P). Intermeshing members (20) and (52) have spiral teeth. The gearing does not have conical gears.

PROJECT RP10485

3.

Figure 3 illustrates a gearing involving only two intermeshing members (1) and (2), with non-parallel and non-intersecting axes. Intermeshing members (1) and (2) have spiral teeth. The gearing does not have conical gears.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Comprising conical gears only, with offset axes, e.g. hypoïd	F16H 1/145
gearings	

F16H 1/145

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, comprising conical gears only, with offset axes, e.g. hypoïd gearings.

PROJECT RP10485

Illustrative example of subject matter classified in this place:

The Figure illustrates a hypoïd gearing involving only two intermeshing members, i.e. conical gears (12) and (14). Axes (Og) and (Op) are offset by a distance (E), i.e. they do not intersect.

F16H 1/163

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, comprising worm and worm-wheel, with balls between the co-operating parts.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a worm gearing involving only two intermeshing members, i.e. worm (4) and worm-wheel (8), with balls (5) between co-operating worm (4) and worm-wheel (8).

F16H 1/166

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, with members rotating around axes on the worm or worm-wheel.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

Figures 1a and 1b illustrate a worm gearing involving only two intermeshing members, i.e. worm (12) and worm-wheel (10). Additionally, the worm gearing includes members, i.e. rollers (22), each rotating around an axis (24) on worm-wheel (10), which is perpendicular to axis (18) of worm wheel (10).

F16H 1/18

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, the members having helical, herringbone or like teeth.

DATE: MAY 1, 2025

PROJECT RP10485

References

Limiting references

This place does not cover:

Toothed gearings for conveying rotary motion, with fixed gear	F16H 1/14
ratio, without gears having orbital motion, involving only two	
intermeshing members, with non-parallel axes, comprising conical	
gears only	

F16H 1/20

Definition statement

This place covers:

Non-orbital toothed gearing wherein the total number of intermeshing members used to convey rotary motion is greater than two intermeshing members.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a reduction gearing, with a fixed gear ratio, involving more than two intermeshing members, i.e. gears (2), (3), (4) and (5).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members	F16H 1/04
Combinations of toothed gearings only, not provided for in groups	F16H 37/041
F16H 1/00 - F16H 35/00, for conveying rotary motion with	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/203

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving more than two intermeshing members, with non-parallel axes.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a gearing with a fixed gear ratio involving four intermeshing members, i.e. spur gears (20) and (22) and hypoïd gears (30) and (31). The axis of gear (31) is not parallel with the axes of gears (20), (22) and (30).
CPC NOTICE OF CHANGES 1671 DATE: MAY 1, 2025

PROJECT RP10485

2.

Figure 2 illustrates a gearing with a fixed gear ratio involving six intermeshing bevel gears. The gearing has four non-parallel axes of rotation.

PROJECT RP10485

Figure 3 illustrates a gearing with a fixed gear ratio involving four intermeshing members, i.e. bevel gears (4) and (300) and spur gears (7) and (8). The axis of gear (300) is not parallel with the axes of gears (4), (7) and (8).

4.

PROJECT RP10485

Figure 4 illustrates a gearing with a fixed gear ratio involving four intermeshing members, i.e. worm (2), worm wheel (3), and spur gears (4) and (5). The axis of worm (2) is not parallel with the axes of gears (3), (4) and (5).

References

Limiting references

This place does not cover:

Toothed gearings for conveying rotary motion, with fixed gear	F16H 1/22
ratio, without gears having orbital motion, involving more than	
two intermeshing members, with a plurality of driving or driven	
shafts or with arrangements for dividing torque between two or	
more intermediate shafts	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/206

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving more than two intermeshing members, characterised by the driving or driven member being composed of two or more gear wheels.

Illustrative example of subject matter classified in this place:

The Figure illustrates a toothed gearing involving ten intermeshing members, i.e., gear pairs (11') and (13'), (12') and (14'), (15') and (16'), (17') and (19'), and (10') and (18'). The driving member, i.e. input shaft (1'), is composed of two gear wheels (11') and (12'). The driven member, i.e. output shaft (4'), is composed of two gear wheels (19') and (10').

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearings with gears having herringbone teeth, for	F16H 1/08
conveying rotary motion, with fixed gear ratio, without gears	
having orbital motion, involving only two intermeshing members,	
with parallel axes	

F16H 1/22

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving more than two intermeshing members, with a plurality of driving or driven shafts or with arrangements for dividing torque between two or more intermediate shafts.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a toothed gearing with a fixed gear ratio and fourteen intermeshing gears. The gearing has one driven shaft (27) and two driving shafts (13) and (13').

2.

Figure 2 illustrates a toothed gearing with a fixed gear ratio and four intermeshing gears. Torque from the driving shaft is divided between two intermediate shafts and summed at the driven shaft.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed gear	F16H 1/28
ratio, with gears having orbital motion	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/222

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without non-parallel axes, without gears having orbital motion, involving more than two intermeshing members, with a plurality of driving or driven shafts or with arrangements for dividing torque between two or more intermediate shafts, with non-parallel axes.

Illustrative examples of subject matter classified in this place:

1.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a toothed gearing with a fixed gear ratio and intermeshing gears (1), (2), (3), (4), (1'), (2'), (3'), and (4'). The gearing includes a driving shaft 6 and two driven shafts (5) and (5'). Torque flows from driving shaft (6) via bevel gears (1) and (2), internal gear (3) and external gear (4) to driven shaft (5); and from driving shaft (6) via bevel gears (1') and (2'), internal gear (3') and external gear (4') to driven shaft (5').

Figure 2 illustrates a toothed gearing with a fixed gear ratio and eight intermeshing gears. Torque from driving shaft (1) is divided between intermediate shafts (12) and (13) and summed at driven shaft (2).

F16H 1/225

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving more than two intermeshing members, with a plurality of

DATE: MAY 1, 2025

PROJECT RP10485

driving or driven shafts or with arrangements for dividing torque between two or more intermediate shafts, with two or more worm and worm-wheel gearings.

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a toothed gearing with a fixed gear ratio and four intermeshing gears. The gearing includes a driven shaft (1) and three driving worm shafts (2), (3) and (7).

PROJECT RP10485

Figure 2 illustrates a toothed gearing with a fixed gear ratio and seven intermeshing gears. Torque from the driving shaft, i.e. worm shaft (1), is divided between intermediate worm shafts (7) and (6) and summed at driven shaft (2).

F16H 1/227

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving more than two intermeshing members, with a plurality of driving or driven shafts or with arrangements for dividing torque between two or more intermediate shafts, comprising two or more gearwheels in mesh with the same internally toothed wheel.

PROJECT RP10485

Figure 1 illustrates a toothed gearing with a fixed gear ratio and six intermeshing gears. The gearing includes two driving shafts (5) and a driven shaft (8). Both gearwheels (3) are in mesh with the same internally toothed wheel (2a).

PROJECT RP10485

Figure 2 illustrates a toothed gearing with a fixed gear ratio and four intermeshing gears. Torque from driving shaft (16) is divided between intermediate shafts (36) and (37) and summed at internally toothed gear (21), which forms the driven shaft. Gearwheels (26) and (31) mesh with the same internally toothed wheel (21).

PROJECT RP10485

Figure 3 illustrates a toothed gearing with a fixed gear ratio and four intermeshing gears. Torque from driving shaft (121) is divided between intermediate shafts (140) and summed at internally toothed gear (131), which forms the driven shaft. Gearwheels (132) mesh with the same internally toothed wheel (131).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with gears	F16H 1/28
having orbital motion	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/24

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving gears essentially having intermeshing elements other than involute or cycloidal teeth.

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a gearing with a fixed gear ratio and without gears having orbital motion. Rollers (5) of gear (2) mesh with semi-circular grooves (4) of gear (1). In other words, the gearing includes intermeshing elements which are neither involute nor cycloidal teeth.

References

Limiting references

This place does not cover:

Toothed gearings for conveying rotary motion, with fixed gear	F16H 1/16
ratio, without gears having orbital motion, involving only two	
intermeshing members, with non-parallel axes, comprising worm	
and worm-wheel	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/26

Definition statement

This place covers:

Special means compensating for misalignment of axes of toothed gearings for conveying rotary motion, with fixed gear ratio, and without gears having orbital motion.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a toothed gearing comprising a pair of spur gears (6) and (10), driving shaft (6), and driven shaft (8). The gearing includes a spherical bearing formed on the drive shaft (8) in order to compensate for the misalignment of the axes associated with shafts (6) and (8), respectively.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Special means compensating for misalignment of axes of toothed gearings, with fixed gear ratio, comprising gears having orbital motion	F16H 1/48
Support of worm gear shafts in the gearbox	F16H 2057/0213

F16H 1/28

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates an orbital or planetary gearing comprising sun gear (4), orbital or planet gears (5), ring or internal gear (6) and planet carrier (7). Input shaft (1) is connected to sun gear (4), output shaft (2) is connected to planet carrier (7), and ring gear (6) is fixed to housing (3). Planet gears (5) rotate around their own axis. In addition, due to rotation of the planet carrier (7), planet gears (5) also orbit relative to and around rotating sun gear (4), i.e. they have orbital motion.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed	F16H 1/22
gear ratio, without gears having orbital motion, involving	
more than two intermeshing members, with arrangements	

DATE: MAY 1, 2025

PROJECT RP10485

for dividing torque between two or more intermediate	
shafts	
Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving more than two intermeshing members, with arrangements for dividing torque between two or more intermediate shafts, comprising two or more gearwheels in mesh with	F16H 1/227
The same internally toothed wheel	E4011 40/00
Differential gearing comprising bevel gears	F10H 48/08
Differential gearing comprising orbital spur gears	F16H 48/10
Transmission arrangements in gas turbine plants, or	F02C 7/36
between the gas-turbine plant and the power user	
Transmission of mechanical power in wind motors	F03D 15/00
Transmission of power in motors, machines or engines covered by subclasses F03B, F03D and F03G, e.g. in wind motors, by toothed gearing of the epicyclic, planetary or differential type	F05B 2260/40311

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

- "Planetary transmission" and "epicyclic transmission"
- "Gearing", "gear train" or "gear set"

F16H 1/2809

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, with means for equalising the distribution of load on the planet gears.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearings for conveying rotary motion, with fixed	F16H 1/48
gear ratio, with gears having orbital motion and with special	
means compensating for misalignment of axes, e.g. for	
equalising distribution of load on the face width of the teeth	

F16H 1/2818

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, with means for equalising the distribution of load on the planet-gears, by allowing limited movement of the ring gear relative to the casing or shaft.

Illustrative examples of subject matter classified in this place:

1.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a planetary gearing with a ring gear (2) connected to casing (5) via an elastically deformable wave element (16). The latter allowing limited movement of ring gear (2) relative to casing (5).

2.

Figure 2 illustrates a planetary gearing with a ring gear (3) connected to casing (7) via pins (5) and roller elements (6a) and (6b), thereby allowing limited movement of ring gear (3) relative to casing (7).

F16H 1/2827

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, with means for equalising the distribution of load on the planet-gears, by allowing limited movement of the planet carrier, e.g. relative to its shaft.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a planetary gearing with planet carrier (13) connected to output shaft (17) by double-tooth clutch (15) which is axially biased by spring (18). This connection allows a limited axial movement of planet carrier (13) relative to output shaft (17).

F16H 1/2836

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, with means for equalising the distribution of load on the planet-gears, by allowing limited movement of the planet gears relative to the planet carrier or by using free floating planet gears.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1.

Figure 1 illustrates a planet gear (36) is rotatably mounted to planet carrier (38) via a planet bearing (63), a sleeve (56) and a flex-pin (40). Flex-pin (40) allows limited movement of planet gear (36) relative to planet carrier (38).

2a.

DATE: MAY 1, 2025

PROJECT RP10485

2b.

Figures 2a and 2b illustrate an example in which planet gears (6) are each rotatably mounted to planet carrier (3) by planet pins (12). Planet pins (12) may freely float within slits (11) in planet carrier (3).

F16H 1/2845

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, with means for equalising the distribution of load on the planet-gears, by allowing limited movement of the sun gear.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a planetary gearing including sun gear (9) connected to casing (10) via an elastically deformable wave element (24). The latter allowing limited movement of sun gear (9) relative to casing (10).

F16H 1/2854

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, involving conical gears.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a reduction gearing (40) including input shaft (31), output shaft (36), non-rotating housing (24) and bevel planet gear (42), i.e. a conical gear, having orbital motion.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed	F16H 1/222
gear ratio, without gears having orbital motion, involving	
more than two intermeshing members, with arrangements	
for dividing torque between two or more intermediate shafts,	
with non-parallel axes, e.g. with bevel gears	
Differential gearing with gears having orbital motion and	F16H 48/08
comprising bevel gears	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/2863

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, arrangements for adjusting or for taking-up backlash.

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary gearing including ring gear (5) having two parts (5') and (5"), which are rotated against each other to reduce the backlash between the teeth of the planet gears (3) and the teeth of the ring gear (5).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Special devices for taking up backlash for toothed bevel	F16H 55/20
gears	
Arrangements for adjusting or for taking-up backlash not	F16H 57/12
provided for elsewhere	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2001/2872

Definition statement

This place covers:

Planetary gearing having a fixed gear ratio and including three central gears which are all engaged with the same planet gear, and the planet gear is mounted on an idling carrier.

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary gearing with a fixed gear ratio and including three central gears, i.e. sun gear (2) and two ring gears (3) and (4), which are all engaged by a common orbital gear (6) mounted on carrier (5). Carrier (5) is not connected to any shaft and therefore idles. In other words, carrier (5) constitutes an "idling carrier".

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed	F16H 2001/2881
gear ratio, with gears having orbital motion, comprising two	
axially spaced central gears, i.e. ring or sun gear, engaged	
by at least one common orbital gear wherein one of the	
central gears is forming the output	

F16H 2001/2881

Definition statement

This place covers:

Planetary gearing having a fixed gear ratio and including at least two axially spaced central gears which are both engaged with the same planet gear, and one of the at least two axially spaced central gears is the output for the gearing.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a planetary gearing with a fixed gear ratio and including two axially spaced central gears, i.e. ring gears (5) and (7), which are both engaged by a common orbital gear (3) and (3'). Ring gear (7) forms the output of the gearing.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion, with fixed	F16H 2001/2872
gear ratio, with gears having orbital motion, comprising three	
central gears, i.e. ring or sun gear, engaged by at least one	
common orbital gear mounted on an idling carrier	

Special Rules of classification

Planetary gearings falling within the scope of both F16H 2001/2872 and F16H 2001/2881, are classified in F16H 2001/2872 only.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2001/289

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, comprising two or more coaxial and identical sets of orbital gears, e.g. for distributing torque between the coaxial sets.

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary gearing with a fixed gear ratio and comprising a first set of planet gears (25) and a second set of planet gears (25'). The two sets of planet gears (25) and (25') are coaxial and identical.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/30

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, in which an orbital gear is a worm; or in which the orbital gear has helical teeth and an axis crossing the main axis of the gearing.

This area also includes gearing in which the orbital gear has helical teeth and where the axis of the orbital gear is set at an angle relative to the main axis.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

PROJECT RP10485

Figures 1a and 1b illustrate a planetary gearing, with a fixed gear ratio, comprising four orbital gears (9), each of which is a worm.

PROJECT RP10485

PROJECT RP10485

Figures 2a and 2b illustrate a planetary gearing comprising three orbital gears (16), each of which has helical teeth and an axis (17) set at an angle α relative to the main axis (18).

F16H 1/321

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1.

DATE: MAY 1, 2025

PROJECT RP10485

2.

Figure 2 illustrates a planetary gear set in which orbital gears (9) and (11) are nutating.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2001/322

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a planetary gear set including an input crank (b), an output (f), an eccentric orbital gear (d) and a flexible coupling (g).

PROJECT RP10485

38 23 25 30 33 34 3 32 43 з 禮 1 35 -38 -1 *5*6 聖 Concession of the local division of the loca

Figure 2 illustrates a gearing including a planetary gear set having carrier (5) with mounted orbital gears (11) interacting with sun gear (3). The gearing further includes universal joints (28), (33) attached to the output of the planetary gear set.

F16H 2001/323

2.

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

1a.

PROJECT RP10485

Figures 1a and 1b illustrate a planetary gear set (1) includes an eccentric crankshaft (10) driven by input shaft (8), eccentric orbital gears (14a), (16a) driven by eccentric crankshaft (10) and output shaft (4).

F16H 2001/324

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a planetary gear set including eccentric input shaft (F), axially spaced and rigidly interconnected eccentric orbital gears (B), (D) and output shaft (C).

F16H 2001/325

Definition statement

This place covers:

Orbital gearing in which the orbital movement of the orbital gears is transferred eccentrically around the main axis of the gearing by carrier pins interacting with circular holes, e.g. cycloid gearings.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

PROJECT RP10485

Figures 1a and 1b illustrate a planetary gear set including input shaft (11), ring gear (20), eccentric orbital gears (30) and (40), carrier (50), sun gear (71) and output shaft (12). Pins (51) in carrier (50) guide orbital gears (30) and (40) in an eccentric motion via holes (32) and (42).

F16H 2001/326

Definition statement

This place covers:

Orbital gearing in which the orbital movement of the orbital gears is transferred eccentrically about the main axis of the gearing by linear guiding means. The linear

DATE: MAY 1, 2025

PROJECT RP10485

guiding means include means that allow radial movement in two orthogonal directions, e.g. an Oldham coupling.

Illustrative example of subject matter classified in this place:

1a.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1a illustrates a gearing comprising input crankshaft (10), output shaft (50) and orbital gears (30). The rotation of each of the orbital gears (30) around its own axis (30a), which is eccentric to center axis (40a), is converted into rotation of output shaft (50) around center axis (40a). Linear guiding means (70), in the form of a cross, allows radial movement in two orthogonal directions of orbital gears (30).

1b.

PROJECT RP10485

1c.

PROJECT RP10485

F16H 2001/327

Definition statement

This place covers:

The eccentrically driven orbital gear has internal gear teeth.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a planetary gear set (20) including input crankshaft (21), orbital gear (24), (25), reactionary ring gear (22) and output shaft (27). Orbital gear (24), (25) includes external teeth (24a) and internal teeth (25a).

PROJECT RP10485

2a.

2b.

PROJECT RP10485

2c.

Figures 2a, 2b and 2c illustrate a planetary gear set including input crankshaft (2a), orbital gear (6), sun gear (9) and output shaft (10). Orbital gear (6) has internal teeth (7).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Gearings comprising primarily only links or levers for	F16H 21/14
conveying rotary motion by means of cranks, eccentrics, or	
like members fixed to one rotary member and guided along	
tracks on the other member	

F16H 2001/328

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

Figures 1a and 1b illustrate a planetary gear set including a crankshaft (1) with balancing means (11), orbital gear (9), reactionary ring gear (10) and output (2).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Shape of crankshafts or eccentric-shafts having regard to	F16C 3/20
balancing	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/34

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, involving gears essentially having intermeshing elements other than involute or cycloidal teeth.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a planetary transmission, with fixed gear ratio, having intermeshing elements, i.e. teeth (7), (8) and (9), which are neither involute nor cycloidal teeth.

PROJECT RP10485

2a.

Figure 2a illustrates an eccentric gearing, with fixed gear ratio, having intermeshing elements, i.e. teeth in form of pins (36), which are neither involute nor cycloidal teeth.

PROJECT RP10485

References

Limiting references

This place does not cover:

Toothed gearings for conveying rotary motion, with fixed gear	F16H 1/30
ratio, with gears having orbital motion, in which an orbital gear	
has an axis crossing the main axis of the gearing, either directly	
or in a projected plane, and has helical teeth or is a worm	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/36

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, with two central gears coupled by intermeshing orbital gears.

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary transmission, with fixed gear ratio, comprising two central gears, i.e. sun gear (2) and ring gear (3), coupled by two intermeshing orbital gears (4a) and (4b).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/46

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, consisting of a plurality of gear trains each with orbital gears and having three or more central gears.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a planetary transmission, with fixed gear ratio, comprising two gear trains (1) and (2) having altogether four central gears, i.e. sun gears (S1) and (S2) and ring gears (R1) and (R2). First gear train (1) has a single orbital gear (P1). Second gear train (2) has a pair of intermeshing orbital gears (P2) and (P3).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of toothed gearings only, not provided for in groups	F16H 37/041
F16H 1/00 - F16H 35/00, for conveying rotary motion with constant	
gear ratio	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 1/48

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, e.g. eccentric gearing or cycloidal gearing, and with special means compensating for misalignment of axes, e.g. for equalising distribution of load on the face width of the teeth.

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

Figures 1a and 1b illustrate a planetary transmission, with a fixed gear ratio, comprising two gear trains (101) and (103), each respectively comprising one set of orbital gears (109) and (125). Figure 1a illustrates a misalignment of the main axes of gear trains (101) and (103). Sun gear (111), sun gear shaft (129) and planet carrier (123) of Figure 1a are replaced with sun gear (201), sun gear shaft (207) and planet carrier (213) in order to compensate for the misalignment which are illustrated in Figure 1b. This results in a more equally distributed load on the face width of the teeth of the sun gear (201), ring gear (105) and planet gears (109).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Special means compensating for misalignment of axes of toothed gearings for conveying rotary motion, with fixed gear ratio, without	F16H 1/26
gears having orbital motion	
Tested assaines for service ing retery motion with fixed assa	E16H 1/2900
roothed gearings for conveying rotary motion, with fixed gear	F10H 1/2009
ratio, with gears having orbital motion, with means for equalising	F 1011 1/2009

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/001

Definition statement

This place covers:

Gearings which are convertible when not being operated such that, after the conversion, a different gear ratio is provided. In other words, convertible does not mean shiftable during operation.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figures 1a and 1b illustrate a gearing having an input shaft (21) and an output shaft (22). The gear ratio can be varied by converting the gearing outside of operation. This conversion is done by mounting output shaft (22) to a different one of gears (11-17). Thereby, different output gears are selected which result in different gear ratios.

PROJECT RP10485

Figure 2 illustrates a gearing having an input shaft (5) and an output shaft (9). The gear ratio is varied from forward to reverse by converting the gearing as follows: the distance ring (13) is removed from its position between the casing body (1) and the lower lid (14) and is interposed between the casing body (1) and the upper lid (15). Thereby output shaft (9) is axially displaced so that input bevel gear (6) now meshes with lower output bevel gear (12) instead of upper output bevel gear (7) and the sense of rotation of the output shaft (8) being thereby reversed.

PROJECT RP10485

Figure 3 illustrates a gearing including gear pair (56 and 58) which transfers torque during operation. Two replacement gear pairs (70 and 72) and (74 and 76) are stored in a chamber. When not in use, the gearing may be converted by substituting gear pair (56 and 58) with one of the two replacement gear pairs (70 and 72) and (74 and 76). This conversion varies the gear ratio.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Series transmissions of modular design, e.g. providing for	F16H 2057/0335
different for different transmission ratios or power ranges	

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

convertible	an adaptation of the gearing when it is not in use.
	Convertible does not mean shiftable during
	operation of the gearing.

F16H 3/002

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1a illustrates a gearing with a variable gear ratio including conical ring gear (6) meshing with gears (24), (25), (26), (27) and (28). Each of gears (24), (25), (26), (27) and (28) has teeth (29) which are radially moveable in and out of mesh with the teeth of conical ring gear (6).

PROJECT RP10485

References

Limiting references

This place does not cover:

Toothed gearing without orbital motion with variable gear ratio or for reversing, essentially with both gears that can be put out of gear and continuously-meshing gears that can be disengaged from their shafts	F16H 3/16
Toothed gearing without orbital motion with variable gear ration or for reversing, exclusively or essentially using gears that can be moved out of gear	F16H 3/20
Toothed gearing without orbital motion with variable gear ration or for reversing, with gears having teeth formed or arranged for obtaining multiple gear ratios, e.g. nearly infinitely variable	F16H 3/42

Informative references

Attention is drawn to the following places, which may be of interest for search:

Cam gearings for conveying rotary motion, with intermediate	F16H 25/06
members guided along tracks on both rotary members	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/003

Definition statement

This place covers:

Toothed gearings in which the gear ratio is changed by inversion of torque, such that regardless of whether an input shaft changes rotation between clockwise and counterclockwise, the output shaft always rotates in the same direction. For example, toothed gearing in which clockwise rotation of an input shaft results in clockwise rotation of an output shaft and a gear ratio of 1, and counter-clockwise rotation of the input shaft results in clockwise rotation of the output shaft and a gear ratio of 1.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a gearing with a variable gear ratio including an input shaft (2000) and an output shaft (3000). When input shaft (2000) rotates clockwise, output shaft (3000) rotates clockwise. When input shaft (2000) rotates counter-clockwise and output shaft (3000) rotates clockwise.

1.
PROJECT RP10485

2a.

2b.

Figures 2a and 2b illustrate a gearing with a variable gear ratio including an input shaft (131) and an output shaft (133). Due to freewheels (151) and (153) the flow path and, thus the gear ratio, is changed when the direction of rotation of input shaft (131) is changed. The direction of rotation of output shaft (133) remains the same.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/006

Definition statement

This place covers:

Parallel selectable power or torque flow paths between the input and the output of the gearing, e.g. dual clutch transmissions.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a toothed gearing including parallel torque flow paths selectively created between input (10a) and output (15a) by clutches (K1a) and (K2a).

DATE: MAY 1, 2025

PROJECT RP10485

2.

Figure 2 illustrates a toothed gearing including parallel torque flow paths selectively created between input (AN) and output (AB) by clutches (K1) and (K2).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of toothed gearing having change gear	F16H 37/042
transmissions in group arrangement	
Exclusively or essentially with continuously meshing gears	F16H 2003/0807
that can be disengaged from their shafts, and with gear	
ratios in which power is transferred by axially coupling idle	
gears to each other	

DATE: MAY 1, 2025

PROJECT RP10485

Exclusively or essentially with continuously meshing gears	F16H 2003/0931
that can be disengaged from their shafts, and each of two	
or more countershafts having an output gear meshing with	
a single common gear on the output shaft	
Exclusively or essentially with continuously meshing gears	F16H 2003/0933
that can be disengaged from their shafts, and with coaxial	
countershafts	

Synonyms and Keywords

In patent documents, the following abbreviations are often used:

DCT dual-clutch transmission

In patent documents, the following words/expressions are often used as synonyms:

• "Dual-clutch transmission", "twin-clutch transmission" and "double clutch transmission", "dual-coupling transmission", "twin-coupling transmission" and "double coupling transmission"

F16H 2003/007

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a six-speed transmission with two parallel flow path (10) and (12). Flow path (12) is directly connected to input (16) via first input shaft (14), and flow path (10) is connected to input (16) via clutch (27) and second input shaft (20).

F16H 2003/008

Definition statement

This place covers:

PROJECT RP10485

1a.

DATE: MAY 1, 2025

PROJECT RP10485

Figures 1a and 1b illustrate a transmission with two parallel flow paths via countershafts (CNT1) and (CNT2), and means (ST1) and (ST2) for selectively driving countershafts (CNT1) and (CNT2).

F16H 3/04

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a multi-speed transmission, without gears having orbital motion, with internally toothed gears (6).

F16H 3/06

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a transmission without gears having orbital motion, comprising three worms (4a), (4b) and (4c) with different pitches, which may be engaged with gear (2) by being axially moved on input shaft (3). Thereby two forward speeds and one reverse speed are provided for output shaft (1).

F16H 3/08

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a transmission without gears having orbital motion with only continuously meshing gears, e.g. (GO6) and (GI6) always meshing. The gears of the transmission can be disengaged from their shafts, e.g. gear (GI6) can be disengaged from shaft (PIS) via coupling (PS2).

Special rules of classification

In this group, gears which can be put out of mesh are not taken into consideration if they are used for reversal only.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/0803

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a four-speed transmission having an input shaft (14) and an output shaft (16) as well as a countershaft (32) which is coaxial to input shaft (14).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable	F16H 2003/0933
gear ratio or for reversing rotary motion without gears having	

DATE: MAY 1, 2025

PROJECT RP10485

orbital motion exclusively or essentially with continuously	
meshing gears, that can be disengaged from their shafts with	
coaxial countershafts	

F16H 2003/0807

Definition statement

This place covers:

PROJECT RP10485

1.

Figure 1 illustrates an eight-speed transmission without gears having orbital motion, comprising idle gears (5) and (6) which are axially couplable to each other by shift element (I), which changes the gear ratio.

PROJECT RP10485

2.

Figure 2 illustrates a multi-speed transmission without gears having orbital motion, including idle gears (33) and (34) which may be axially coupled to each other by engaging clutch (38), in order to transfer power.

DATE: MAY 1, 2025

PROJECT RP10485

Glossary of terms

In patent documents, the following words/expressions are often used with the meaning indicated:

winding transmission	a transmission including a gear ratio that is established by using multiple gear pairs in the transmission. For example, a transmission including a 1st gear ratio achieved by using more than one of the other existing gear pairs. In this 1 st gear ratio, torque is wound through the transmission via the several gear pairs. Thereby, a separate gear plane for the 1st gear ratio is not necessary. This concept is often applied to the 1st gear and the reverse gear. These gears are usually used only during short periods, such that the reduced efficiency by using several gear pairs instead of only one gear pair can be neglected.
winding gear ratio	a speed, e.g. 1 st speed, which is achieved by winding torque through a winding transmission

F16H 2003/0811

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a four-speed transmission having an input shaft (1) and a coaxial output shaft (3). It uses unsynchronised clutches (9), (11) and (12).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable gear	F16H 3/12
ratio or for reversing rotary motion, without gears having orbital	
motion, exclusively or essentially with continuously meshing gears,	
that can be disengaged from their shafts, with means for	
synchronisation not incorporated in the clutches	
Smoothing ratio shift by preventing or solving a tooth butt situation	F16H 2061/047
upon engagement failure due to misalignment of teeth	
Smoothing ratio shift by smoothing engagement or release of	F16H
positive clutches; Methods or means for shock free engagement of	2061/0474
dog clutches	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/0818

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a multi-speed transmission comprising means for power-shifting, by using bypass clutches (51) and (52).

PROJECT RP10485

2.

Figure 2 illustrates a multi-speed transmission comprising means for power-shifting, by using friction clutches (CT1) to (CT6).

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with means for synchronisation not incorporated in the clutches	F16H 3/12
Smoothing ratio shift by bridging torque interruption by torque supply with a clutch in parallel torque path	F16H 2061/0429

F16H 2003/0822

Definition statement

This place covers:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a six-speed-transmission comprising a reverse shaft (48), two reverse gears (42) and (46) and a reverse clutch (44).

F16H 2003/0826

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

1c.

PROJECT RP10485

1d.

Figures 1a, 1b, 1c and 1d illustrate a multi-speed transmission without gears having orbital motion. Gear (Lo) on the output shaft is used for the (1st) and (3rd) forward speeds and gear (2) on the input shaft is used for the (2nd) and (6th) forward speeds.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears that can be disengaged from their shafts, with gear ratios in which power is transferred by axially coupling idle gears to each other	F16H 2003/0807
Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, including a single countershaft, with coaxial input and output shafts	F16H 3/0915
Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from	F16H 2003/0931

DATE: MAY 1, 2025

PROJECT RP10485

their shafts, with two or more countershafts, each	
countershaft having an output gear meshing with a single	
common gear on the output shaft	

F16H 3/083

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a three-speed transmission including balls (2) as radially acting clutching members. By axially moving sliding key (1), the three balls (2) are selectively radially moved into engagement with their respective idle gear.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Sliding keys as final output elements; Details thereof	F16H 2063/3096
Clutches per se with clutching members movable	F16D 11/12
otherwise than only axially	
Clutches per se with wedging balls or rollers or with other	F16D 15/00
wedgeable separate clutching members	
Systems of a plurality of actuated clutches per se	F16D 21/00

F16H 3/085

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts, e.g. gears (I), (II) and (III). The transmission comprises two output shafts (7) and (12). It is noted that differential casing (9) is not considered an output shaft.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears that can be disengaged from their shafts, with two or more countershafts, each countershaft having an output gear meshing with a single common gear on the output shaft	F16H 2003/0931
Combinations of mechanical gearings, comprising essentially only toothed or friction gearings, with differential gearing, with a plurality of driven shafts, with only one input shaft	F16H 37/0813
Transmissions for multiple ratios comprising a power take off shaft	F16H 2200/0004
Arrangement or mounting of transmissions in vehicles, characterised by arrangement, location or type of power take-off	B60K 17/28
Arrangement or mounting of transmissions in vehicles, for driving both front and rear wheels, e.g. four wheel drive vehicles	B60K 17/34

F16H 3/087

References

Limiting references

This place does not cover:

Toothed gearings for conveying rotary motion with variable	F16H 3/083
gear ratio or for reversing rotary motion, without gears having	
orbital motion, exclusively or essentially with continuously	
meshing gears that can be disengaged from their shafts, with	
radially acting and axially controlled clutching members, e.g.	
sliding keys	
Toothed gearings for conveying rotary motion with variable	F16H 3/085
gear ratio or for reversing rotary motion, without gears having	
orbital motion, exclusively or essentially with continuously	
meshing gears that can be disengaged from their shafts, with	
more than one output shaft	

DATE: MAY 1, 2025

PROJECT RP10485

Special rules of classification

When counting the countershafts, the reverse countershaft is not taken into consideration if it is used for reversal only.

F16H 3/089

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved.

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (10) and an output shaft (20) which are parallel to each other. The transmission does not include a countershaft. It is noted that reverse countershaft (30), which is used for reversal only, is not counted as a countershaft, per the Note in F16H 3/087. It is further noted that differential casing (71) is not considered an output shaft, since the differential is not part of the multi-speed transmission.

F16H 3/091

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with

DATE: MAY 1, 2025

PROJECT RP10485

continuously meshing gears, that can be disengaged from their shafts, including a single countershaft.

Illustrative example of subject matter classified in this place:

The Figure illustrates a six-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (19) and an output shaft (22), which are parallel to each other, as well as a single countershaft (24). It is noted that reverse countershaft (40), which is used for reversal only, is not counted as a countershaft, per the Note in F16H 3/087. It is further noted that differential casing (15) is not considered an output shaft, since the differential is not part of the multi-speed transmission.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/0915

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, including a single countershaft, with coaxial input and output shafts.

Illustrative example of subject matter classified in this place:

The Figure illustrates a four-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (15) and output shaft (16), which are coaxial to each other, as well as a single countershaft (17).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/093

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more countershafts.

PROJECT RP10485

The Figure illustrates a six-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (10), an output shaft (50) and two countershafts

DATE: MAY 1, 2025

PROJECT RP10485

(20) and (30). It is noted that the differential housing (GFN) is not considered an output shaft, since the differential is not part of the multi-speed transmission.

F16H 2003/0931

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more countershafts, each countershaft having an output gear meshing with a single common gear on the output shaft.

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (10), output shaft (11) and two countershafts (12) and (13). Countershafts (12) and (13) comprise output gears (26) and (33), respectively, meshing with a single common gear (27) on the output shaft.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable	F16H 3/085
gear ratio or for reversing rotary motion, without gears having	
orbital motion, exclusively or essentially with continuously	
meshing gears that can be disengaged from their shafts, with	
more than one output shaft	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/0933

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more countershafts, with coaxial countershafts.

Illustrative example of subject matter classified in this place:

The Figure illustrates a five-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (1) and an output shaft (4) as well as two coaxial countershafts (2) and (5).
DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

With countershafts coaxial with input or output shaft	F16H 2003/0803

F16H 2003/0935

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more countershafts, in which all or two or more of its countershafts comprising only one idle gear and one gear fixed to the respective countershaft.

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises four countershafts (28), (13), (17) and (22). Countershafts (28), (13) and (22) each include only one idle gear and one gear fixed to the respective countershaft. It is noted that reverse countershaft (R), which is used for reversal only, is not counted as a countershaft, per the Note in F16H 3/087.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/0936

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more countershafts, in which all or two or more of its countershafts comprising only two idle gears and one gear fixed to the respective countershaft.

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises input shaft (15), output shaft (38), and five countershafts (16), (17), (18), (19) and (37), each of which comprises only two idle gears and one gear fixed to the respective countershaft. It is noted that reverse countershaft (39), which is used for reversal only, is not counted as a countershaft, per the Note in F16H 3/087.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/0938

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more countershafts, with multiple gears on the input shaft directly meshing with respective gears on the output shaft.

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises an input shaft (Sm), an output shaft (Sc), and two countershafts (Ss1) and (Ss2). Gears (31), (48), and (50) on input shaft (Sm) are directly meshing with respective gears (32), (52), and (53) on output shaft (Sc). It is noted that differential casing (26) is not considered an output shaft.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/095

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. Torque is simultaneously transmitted via both countershafts (14) and (16), i.e. torque is evenly distributed from the input shaft (32) to both countershafts (14) and (16).

F16H 3/097

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with two or more

PROJECT RP10485

countershafts, the input and output shafts being aligned on the same axis.

Illustrative example of subject matter classified in this place:

The Figure illustrates a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises two countershafts (4) and (6). It further comprises an input shaft (3) and an output shaft (1) which are coaxial.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/10

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a three-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises three one-way clutches (5a), (6a), and (7a) in addition to three friction clutches (5b), (6b) and (7b). During a shift of the transmission, the one-way clutches (5a), (6a), and (7a) allow an off-going friction clutch to remain engaged for a brief time while an on-coming friction clutch engages.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings for conveying rotary motion with intermittently-	F16H 29/00
driving members, e.g. with freewheel action	
Other gearings with freewheeling members or other	F16H 31/00
intermittently driving members	
Freewheels or freewheel clutches per se	F16D 41/00

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/123

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears that can be disengaged from their shafts, with means for synchronisation not incorporated in the clutches, using a brake.

Illustrative example of subject matter classified in this place:

The Figure illustrates a multi-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission comprises a brake (26) which is engaged during upshifts in order to reduce the speed of input shaft (2).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Synchronisation before shifting by control of shaft brakes F16H 2061/0411

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/126

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts, with means for synchronisation not incorporated in the clutches, using an electric drive.

PROJECT RP10485

The Figure illustrates a six-speed transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission uses electric motor (29) as means for synchronisation.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Synchronisation before shifting by an electric machine, e.g.	F16H 2061/0422
by accelerating or braking the input shaft	

F16H 3/14

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a transmission without gears having orbital motion and including continuously meshing gears that can be disengaged from their shafts. The transmission includes one forward speed via meshing gears (3) and (4), and one reverse speed via meshing gears (7), (8) and (10).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearings for reversal only, without gears having orbital motion, essentially with both gears that can be put out of gear and continuously-meshing gears that can be disengaged from their shafts	F16H 3/18
Toothed gearings for reversal only, without gears having	F16H 3/40
orbital motion, exclusively or essentially using gears that	
can be moved out of gear	
Combinations of toothed gearings only, with change gear	F16H 2037/044
transmissions in group arrangement, without gears having	
orbital motion, comprising a separate gearing unit for	
shifting between forward or reverse	
Combinations of toothed gearings only, with forward-	F16H 2037/049
reverse units with forward and reverse gears for achieving	
multiple forward and reverse gears, e.g. for working	
machines	

F16H 3/145

Definition statement

This place covers:

PROJECT RP10485

1a.

1b.

Figures 1a and 1b illustrate a transmission without gears having orbital motion. The transmission includes bevel gears (2) and (3) which are continuously meshing with gear (6). This allows bevel gears (2) and (3) to rotate in opposite directions. Bevel gears (2)

DATE: MAY 1, 2025

PROJECT RP10485

and (3) can be disengaged from shafts (12a) and (12b), respectively, as shaft assembly (7) is moved axially.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings for reversal only using gears having orbital	F16H 3/60
motion	

F16H 3/16

Special rules of classification

In this group, gears which can be put out of mesh are not taken into consideration if they are used for reversal only.

F16H 3/20

Special rules of classification

In this group, gears which can be put out of mesh are not taken into consideration if they are used for reversal only.

F16H 3/24

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially using gears that can be moved out of gear, with gears shiftable only axially, with driving and driven shafts coaxial.

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion. The transmission includes an input shaft (2) and an output shaft (3), which is coaxial to input shaft (2). Each of gears (19), (20) and (21) is axially shiftable such that they can be moved in and out of gear.

F16H 3/30

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, without gears having orbital motion, exclusively or essentially using gears that can be moved out of gear, with gears shiftable only axially, with driving and driven shafts not coaxial.

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion. The transmission includes an input shaft (1) and an output shaft (2), which is not coaxial to input shaft (1). Each of gears (3), (4), (5), (6), (17), (18), (19) and (20) is axially shiftable such that they can be moved in and out of gear.

F16H 3/34

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a multi-speed transmission without gears having orbital motion. The transmission includes an input shaft (3) and an output shaft (5). Each of gears (9) and (10) is shiftable in a circumferential direction such that they can be moved in and out of gear.

F16H 3/363

Definition statement

This place covers:

PROJECT RP10485

Figure 1 illustrates a multi-speed transmission without gears having orbital motion. The transmission includes coaxial gears (16a-16k) have conical teeth and are arranged on a surface of generally conical shape.

PROJECT RP10485

Figure 2 illustrates a multi-speed transmission without gears having orbital motion. The transmission includes coaxial gears (18), which do not have conical teeth, but are arranged on a surface of generally conical shape.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/366

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a multi-speed transmission without gears having orbital motion. The transmission includes three coaxial gears arranged on flat disc-type surface (12) which engage with the gear on (16).

F16H 3/385

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Constructional features of the final output mechanisms for	F16H 63/302
reversing	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/40

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

- 1b. Forward gear 9 22 20 11 10 10 12 12 12 25 21
- 1c. Reverse gear

Figures 1a-1c illustrate a multi-speed transmission without gears having orbital motion. The transmission includes one forward gear (Figure 1b) and one reverse gear (Figure 1c). Gears (21) and (22) may be moved in and out of mesh with output gear (12) when pivotable lever (23) is pivoted around the axis of input shaft (9).

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for reversal only, without gears having	F16H 3/14
orbital motion, exclusively or essentially with continuously	
meshing gears, that can be disengaged from their shafts	
Toothed gearings for reversal only, without gears having	F16H 3/18
orbital motion, essentially with both gears that can be put	
out of gear and continuously-meshing gears that can be	
disengaged from their shafts	
Combinations of toothed gearings only, with change gear	F16H 2037/044
transmissions in group arrangement, without gears having	
orbital motion, comprising a separate gearing unit for	
shifting between forward or reverse	
Combinations of toothed gearings only, with forward-	F16H 2037/049
reverse units with forward and reverse gears for achieving	
multiple forward and reverse gears, e.g. for working	
machines	

F16H 3/42

Definition statement

This place covers:

DATE: MAY 1, 2025

PROJECT RP10485

1a. Transmission without gears having orbital motion and providing a continuously variable gear ratio (top view)

PROJECT RP10485

1b. Transmission without gears having orbital motion and providing a continuously variable gear ratio (side view)

Figures 1a and 1b illustrate a transmission with gears (A) and (B) having teeth (19) that are arranged for obtaining multiple gear ratios.

F16H 3/423

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a transmission without gears having orbital motion and providing a continuously variable gear ratio with gear teeth (4) arranged on a conical surface.

F16H 3/44

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings using gears having orbital motion for	F16H 3/005
conveying rotary motion with variable gear ratio or for	
reversing rotary motion, the gear-ratio being changed by	
inversion of torque direction	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2003/442

Definition statement

This place covers:

Variable or reverse gearing including two or more orbital gear sets arranged in or near a single plane, e.g. in a stacked formation radially outward from the gearing main axis.

Illustrative example of subject matter classified in this place:

The Figure illustrates a multi-speed transmission including orbital gear set (P2) which is stacked radially outward of orbital gear set (P1).

F16H 2003/445

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a two-speed transmission including orbital gears (7a) and (7b), i.e. gears having orbital motion. Due to clutches (12a) and (12b) there is no permanent connection to input shaft (2).

F16H 2003/447

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a two-speed transmission including orbital gears (7a) and (7b), i.e. gears having orbital motion. Due to clutches (12a) and (12b) there is no permanent connection to output shaft (14).

F16H 3/50

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a two-speed planetary transmission including two central gears, i.e. left bevel gear (165) and right bevel gear (160), connected by orbital conical gears (155) and (170).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/54

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a planetary transmission which can be shifted between neutral and a single speed. It consists of only two central gears, i.e. externally toothed sun gear (10) and internally toothed ring gear (4), connected by rigidly connected orbital spur gears (11a) and (11b) (also often called a stepped planet).

PROJECT RP10485

Figure 2 illustrates a two-speed planetary transmission consisting of only two central gears, i.e. externally toothed sun gear (P11a) and internally toothed ring gear (P13a), connected by single orbital spur gear (P14a).

F16H 3/56

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a two-speed planetary transmission consisting of two central gears, i.e. sun gear (6) and sun gear (8), connected by orbital spur gears (12) and (13) (also often called a stepped planet).

F16H 3/58

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a two-speed planetary transmission consisting of two central gears, i.e. sun gear (114) and ring gear (122), connected by two intermeshing orbital gears (118) and (120).

F16H 3/60

Definition statement

This place covers:
PROJECT RP10485

1a.

DATE: MAY 1, 2025

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a transmission including only two central gears (22) and (33) and orbital bevel gears (41). The transmission provides only a forward gear ratio and a reverse gear ratio.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings for reversal only using gears without orbital	F16H 3/145
motion with a pair of coaxial bevel gears, rotatable in	
opposite directions	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/64

Definition statement

This place covers:

Orbital gear transmissions composed of gear trains having a single connection to pass the drive from one train to another.

Illustrative example of subject matter classified in this place:

The Figure illustrates a multi-speed planetary transmission having five planetary gear trains (62), (28), (28), (28), (28), (28), ten central gears, i.e. five sun gears and five ring gears, and five sets of orbital gears, one for each (planetary) gear train. Torque always passes from the gear train (62) to the first gear train (28) via a single connection, from the first gear train (28) to the second gear train (28) via a single connection. No two gear trains are connected by more than one connection, and torque always flows through all the gear trains.

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

set of orbital gears	orbital gears mounted on the same carrier are regarded as a set of orbital gears, e.g. all orbital gears of a Ravigneaux set are mounted on the same carrier and are considered as a single set of
	orbital gears. However, in the case of two simple
	planetary gear trains, in which both carriers are

DATE: MAY 1, 2025

PROJECT RP10485

	permanently connected to each other, these carriers are not regarded as a "same carrier", i.e. in this case there are two sets of orbital gears.
Ravigneaux set	a planetary gear set with at least three central gears, and conveying rotary motion between axially-spaced orbital gears. It comprises a long orbital gear consisting of two axially spaced orbital gears which are fixedly connected to each other. It comprises a further orbital gear which meshes with one of the orbital gears of the long orbital gear to form a pair of intermeshing orbital gears. All orbital gears are mounted on a common planet carrier and are considered as a single set of orbital gears.

F16H 3/66

Definition statement

This place covers:

Orbital gear transmissions composed of gear trains having multiple connections between gear trains to pass the drive from one train to another via different paths between gear trains.

PROJECT RP10485

The Figure illustrates a multi-speed planetary transmission having four planetary gear trains (RS1), (RS2), (RS3), (RS4), eight central gears, i.e. four sun gears and four ring gears, and four sets of orbital gears, one for each planetary gear train. Torque passes through different planetary gear trains depending on clutch engagement. Further, there are multiple connections between gear trains (RS2) and (RS3) depending on clutch engagement.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

The of more bete of orbital gears analiged in a single plane	Two or more sets of orbital gears arranged in a single plane	F16H 2003/442
--	--	---------------

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

set of orbital gears	orbital gears mounted on the same carrier are regarded as a set of orbital gears, e.g. all orbital gears of a Ravigneaux set are mounted on the same carrier and are considered as a single set of
	orbital gears. However, in the case of two simple

DATE: MAY 1, 2025

PROJECT RP10485

	planetary gear trains, in which both carriers are permanently connected to each other, these carriers are not regarded as a "same carrier", i.e. in this case there are two sets of orbital gears
Ravigneaux set	a planetary gear set with at least three central gears, and conveying rotary motion between axially- spaced orbital gears. It comprises a long orbital gear consisting of two axially spaced orbital gears which are fixedly connected to each other. It comprises a further orbital gear which meshes with one of the orbital gears of the long orbital gear to form a pair of intermeshing orbital gears. All orbital gears are mounted on a common planet carrier and are considered as a single set of orbital gears.

F16H 3/663

Definition statement

This place covers:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a multi-speed planetary transmission including two planetary gear trains (20) and (21) and having multiple connections between the two gear trains to pass the drive from one train to another via different paths. Planetary gear train (21) is a Ravigneaux set comprising sun gear (S2), sun gear (S3) and ring gear (R2) (i.e., three central gears). Ravigneaux set (21) further comprises a long orbital gear (26) consisting of a left and a right orbital gear which are fixedly connected to each other and which have the same diameter. Ravigneaux set (21) also comprises orbital gear (25) which meshes with the orbital gear on the right side of long orbital gear (26) to form a pair of intermeshing orbital gears. Planetary gear train (20) is a planetary gear train having two intermeshing orbital gears (23A) and (23B) which are not axially spaced from each other.

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

Ravigneaux set	a planetary gear set with at least three central gears, and conveying rotary motion between
	orbital gear consisting of two axially spaced orbital gears which are fixedly connected to each other. It
	comprises a further orbital gear which meshes with one of the orbital gears of the long orbital gear to
	form a pair of intermeshing orbital gears. All orbital
	and are considered as a single set of orbital gears.

F16H 3/666

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a multi-speed planetary transmission having four planetary gear trains (R1S1), (RS2), (RS3) and (RS4) and eight central gears, i.e. sun gears (S01), (S02), (S03) and (S04) and ring gears (H01), (H02), (H03) and (H04). Each of the planetary gear trains (RS1) and (RS2) has two intermeshing orbital gears making them planetary gear trains. In other words, orbital gears (PLa1) and (PLi1) of planetary gear train (RS1) are intermeshing, and orbital gears (PLa2) and (PLi2) of planetary gear train (RS2) are intermeshing.

References

Limiting references

This place does not cover:

Conveying rotary motion between axially spaced orbital	F16H 3/663
gears, e.g. a stepped orbital gear or Ravigneaux	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/68

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary transmission including two orbital worm gears (26) and (32), the axes (24) and (30) thereof crossing the main axis (12) of the transmission.

F16H 3/70

Definition statement

This place covers:

Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion, using gears having orbital motion, in which the central axis of the gearing lies inside the periphery of an orbital gear, e.g. eccentric gearing or cycloidal gearing.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/72

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Arrangement or mounting of plural diverse prime-movers for	B60K 6/20
mutual or common propulsion, the prime-movers consisting of	
electric motors and internal combustion engines, e.g. HEVs	

F16H 3/721

Definition statement

This place covers:

Orbital gear transmissions with an energy dissipating device used to vary the speed of the transmission, e.g. a regulating brake.

Illustrative examples of subject matter classified in this place:

1.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a planetary gear transmission including regulatory brake (BK101). Regulatory brake (BK101) dissipates energy in the gearing in order to vary the speed of transmission output shaft (S102).

2.

Figure 2 illustrates a planetary gear transmission including main drive (2) and auxiliary drives (3.1) and (3.2). The auxiliary drives can vary the speed of the gearing continuously. Additionally, retarder (12) dissipates energy in the gearing in order to vary the speed of the gearing.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/722

Definition statement

This place covers:

Orbital gear transmissions with a fluid throttle as an energy dissipating device, in order to vary speed in the transmission continuously.

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a planetary gear transmission including planet carrier (6), pump (11), fluid circuit (12) and fluid throttle (13). Energy of planet carrier (6) is dissipated by the resistance of fluid circuit (12), which is continuously varied by fluid throttle (13), in order to vary the speed of transmission output shaft (3).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of mechanical gearing with fluid clutches or fluid	F16H 47/00
gearing	

F16H 3/724

Definition statement

This place covers:

Planetary transmissions with at least one externally powered electric machine as a secondary drive, in order to vary speed continuously.

PROJECT RP10485

The Figure illustrates a planetary transmission comprising an externally powered electric machine (5) as a secondary drive which continuously varies the speed of output shaft (22).

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Series-parallel type hybrid transmissions consisting of electric	B60K 6/445
motors and internal combustion engines, e.g. HEVs, of the	
differential gearing distribution type	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings using gears having orbital motion for conveying	F16H 3/727
rotary motion with variable gear ratio or for reversing rotary	
motion, with at least two dynamo electric machines for creating an	

DATE: MAY 1, 2025

PROJECT RP10485

electric power path inside the gearing, e.g. using generator and	
motor for a variable power torque path, in order to vary speed	
continuously	

F16H 3/725

Definition statement

This place covers:

Planetary transmissions with at least one externally powered electric machine as a secondary drive used to vary speed continuously, and with means to change the ratio in the mechanical gearing.

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary transmission comprising an externally powered motor/generator (MG) as a secondary drive which continuously varies the speed of output shaft (W₂). The transmission further includes brake (B), one-way clutch (FL) and clutch (K) to change the ratio in the mechanical gearing.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings using gears having orbital motion for	F16H 3/728
conveying rotary motion with variable gear ratio, with, in order	
to vary speed continuously, at least two dynamo electric	
machines for creating an electric power path inside the gearing,	
e.g. using generator and motor for a variable power torque path	

F16H 3/727

Definition statement

This place covers:

Planetary transmissions with at least two dynamo electric machines as a secondary drive for creating an electric power path inside the gearing. For example, planetary transmission including a generator and motor which provide a variable power torque path in the gearing, and an electric power path between the generator and the motor.

PROJECT RP10485

1.

Figure 1 illustrates a planetary transmission with an electric variator as a secondary drive. The electric variator consists of two dynamo electric machines (17) and (22), one working as motor and the other as generator, with an electrical power path between the two.

2.

Figure 2 illustrates a planetary transmission with an electric variator as a secondary drive. The electric variator consists of two dynamo electric machines (70) and (72).

DATE: MAY 1, 2025

PROJECT RP10485

When one machine works as a motor and the other as a generator, an electrical power path is created between the two (via electrical circuits 78 and 80 and battery 82).

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Arrangement of prime-movers consisting of electric motors B60K 6/20 and internal combustion engines, e.g. HEVs

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings using gears having orbital motion for	F16H 3/724	
conveying rotary motion with variable gear ratio or		
reversing motion, using externally powered electric		
machines, in order to vary speed continuously		
Power-split transmissions with distributing differentials, with	F16H	
the output of the CVT connected or connectable to the	2037/0866	
output shaft		
Power-split transmissions with summing differentials, with	F16H 2037/088	
the input of the CVT connected or connectable to the input		
shaft		
Power-split transmissions with one differential at each end	F16H 2037/101	
of a continuously variable transmission, i.e. CVT		
Combinations of gears comprising only toothed or friction	F16H 2037/102	
gearings with differential gearing at both ends of		
intermediate shafts, the input or output shaft of the		
transmission is connected or connectable to two or more		
differentials		
Power-split transmissions with each end of a CVT	F16H 2037/103	
connected or connectable to a planetary gear set having		
four or more connections, e.g. a Ravigneaux set		
Power-split transmissions with at least one end of a CVT	F16H 2037/104	
connected or connectable to two or more differentials		

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/728

Definition statement

This place covers:

Planetary transmissions with at least two dynamo electric machines as a secondary drive for creating an electric power path inside the gearing. For example, a planetary transmission including a generator and motor which provide a variable power torque path in the gearing, and an electric power path between the generator and the motor, and the transmission further including means to change ratio in the mechanical gearing.

Illustrative example of subject matter classified in this place:

The Figure illustrates a planetary transmission with an electric variator as a secondary drive. The electric variator consists of two dynamo electric machines (82) and (85). When one machine works as a motor and the other as a generator, an electrical power path is created between the two (via electrical circuits B and battery 86). The transmission further comprises clutch (60) to change the ratio in the mechanical gearing.

F16H 3/74

Definition statement

This place covers:

Complexes, using orbital gears, but not using actuatable speed-changing or regulating members.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings for conveying rotary motion with intermittently-	F16H 29/12
driving members between rotary driving and driven	
members	

F16H 3/76

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

Figures 1a and 1b illustrate a transmission comprising a sun gear, a ring gear and a set of orbital gears. The interaction between the teeth of the orbital gears and the roller teeth of the ring gear provides a continuously variable gear ratio.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable	F16H 3/42
gear ratio or for reversing rotary motion without gearing	
having orbital motion with gears having teeth formed or	
arranged for obtaining multiple gear ratios	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 3/78

Definition statement

This place covers:

Special adaptation of synchronisation mechanisms to gearings having orbital motion for conveying rotary motion with variable gear ratio or for reversing rotary motion.

Illustrative example of subject matter classified in this place:

The Figure illustrates a two-speed planetary transmission having a synchro-mesh dog clutch consisting of a clutch sleeve (26), dog teeth (38) and a synchroniser ring (36).

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Constructional features of final output elements, i.e. the final elements to establish gear ratio, e.g. coupling sleeves or other means establishing coupling to shaft	
Transmissions using gears with orbital motion and usingF16Hpositive clutches, e.g. dog clutches2200/2094	
Arrangements for synchronisation, also for power-operated clutches	F16D 23/02

F16H 7/023

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Driving-belts per se with a contact surface of special shape, e.g. toothed	F16G 1/28
V-belts per se with a contact surface of special shape, e.g. toothed	F16G 5/20

F16H 7/08

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Tensioning or adjusting equipment for chains, belts or the like for	B62M 9/16
cycles	
Belt or chain tensioning arrangements for endless conveyors	B65G 23/44

DATE: MAY 1, 2025

PROJECT RP10485

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings with endless belts	F16H 7/02

F16H 7/10

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Means for varying tension of belts, ropes, or chains for	F16H 7/0827
disconnecting the drive	

F16H 7/1209

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Vibration damping per se	F16F

F16H 15/48

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

orbital or planet members	members having orbital motion, i.e. which rotate
	around their own axis and orbit relative to a central
	member

DATE: MAY 1, 2025

PROJECT RP10485

F16H 15/50

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a continuously variable friction gearing including input shaft (124), output shaft (170), and orbital friction balls (160).

F16H 2019/0686

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a gearing including rotary input (930) and reciprocating output (900). The flexible member (910) forms a closed loop (i.e. the flexible member is endless).

F16H 21/18

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Eccentric gearing with toothed gears having orbital motion	F16H 1/32

F16H 21/22

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

With two or more connecting-rods to each crank or eccentric	F16H 21/34
Other engines characterised by connections between pistons and main shafts	F02B 75/32

F16H 21/24

Definition statement

This place covers:

PROJECT RP10485

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a crank gearing comprising primarily only links or levers for converting rotary motion of crank shaft (21) into reciprocating motion of piston (14) which functions as a guided slide via connecting rod (7). The crank gearing does not comprise any further links or guides in addition to the one connecting rod (7) and one guided slide (14).

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

With cams or additional guides	F16H 21/28
With additional members comprising only pivoted links or	F16H 21/32
arms	

F16H 21/26

Definition statement

This place covers:

Crank gearings or eccentric gearings comprising primarily only links or levers, for interconverting rotary motion and reciprocating motion. All movement is in, or parallel to, a single plane, with one connecting-rod and one guided slide to each crank or eccentric. The gearing includes joints or levers which may toggle, or move, between two locations.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

With additional members comprising only pivoted links or	F16H 21/32
arms	

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

• "Toggle joint", "Knee joint", "Toggle lever" and "Knee lever"

DATE: MAY 1, 2025

PROJECT RP10485

F16H 21/28

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a crank gearing comprising primarily only links or levers for converting rotary motion of crank shaft (11) into reciprocating motion of piston (1) which functions as a guided slide. Crank pin (8) moves along groove (6), such that groove (6) functions as a cam. Connecting rod (7) is guided by crosshead (12) functioning as an additional guide.

PROJECT RP10485

2.

Figure 2 illustrates a crank gearing comprising primarily only links or levers for converting rotary motion of the crank shaft into reciprocating motion of the piston which functions as a guided slide. The gearing further includes a crosshead a functioning as an additional guide.

PROJECT RP10485

PROJECT RP10485

Figures 3a and 3b illustrate a crank gearing comprising primarily only links or levers for converting rotary motion of crank shaft (k) into reciprocating motion of piston (b) which functions as a guided slide. Pin (d) at the lower end of connecting rod (c) interacts with a cam (g) as well as a long hole (h) which also functions as a cam of crank arm (i).

F16H 21/30

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a crank gearing for converting rotary motion of one crank shaft (4) into reciprocating motion of one piston (1) (guided slide) via one connecting rod (21) and by using gears (24) and (25) as members having rolling contact.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Crank gearings comprising primarily only links or levers	F16H 21/365
with all movement being in, or parallel to, a single plane,	
for interconverting rotary motion and reciprocating motion,	
without swinging connecting-rod, with orbital gearing	
having a ratio of 2:1 between central gear and orbital gear	

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

members having rolling	e.g. a pair of toothed gears or a toothed pinion
contact	gear meshing with a rack.

F16H 21/32

Definition statement

This place covers:
DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a crank gearing comprising primarily only links and levers for converting rotary motion of crank shaft (A) into reciprocating motion of piston (F) which functions as a guided slide. Crank pin (B) is connected to connecting rod (F-E) via additional pivoted links (B-C), (C-E) and (G-E).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

VVIIN toggle action F16H 21/26

F16H 21/34

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a crank gearing comprising primarily only links or levers for converting rotary motion of crank shaft (S) into reciprocating motion of two pistons (P), which two pistons function as guided slides. Two respective connecting rods (2') and (4') are connected to a single crank (14).

PROJECT RP10485

Figure 2 illustrates a crank gearing including primarily only links or levers for converting rotary motion of a crank shaft (9) into reciprocating motion of five pistons (6), which pistons function as guided slides. Five respective connecting rods (10) are connected to a single crank (9).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

With one connecting-rod and one guided slide to each	F16H 21/22
crank or eccentric	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 21/36

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figures 1a and 1b illustrate an eccentric gearing including a crankshaft (11), eccentric member (9), rod (6) and piston (13). Rotary motion of crankshaft (11) with eccentric member (9) is converted into reciprocating motion of piston (13) which functions as a guided slide. Rod (6) moves only linearly and does not swing.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 2 illustrates a crank gearing including primarily only links or levers for converting rotary motion of the crank shaft into reciprocating motion of the piston functioning as a guided slide. The crank pin is running in a cam-like slot, which generates a slot-and-crank motion. The connecting rod does not swing.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings comprising primarily only cams, cam followers,	F16H 25/14
and screw-and-nut mechanisms for interconverting rotary	
motion and reciprocating motion, with reciprocation	
perpendicular to the axis of rotation	

F16H 21/365

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

1a.

Figure 1a illustrates an eccentric gearing including a crank (10), (12), (13) which rotatably carries orbital gear (19), and further including ring gear (14), rod (21) and piston (8). Rotary motion of crank (10), (12), (13) and orbital gear (19) is converted into reciprocating motion of piston (8) which functions as a guided slide. Rod (21) moves only linearly and does not swing. The orbital gearing includes a ratio of 2:1 between the ring gear (14) and the orbital gear (19).

PROJECT RP10485

1b.

F16H 25/02

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of mechanical gearings, not provided for in	F16H 37/14
groups F16H 1/00 - F16H 35/00, comprising primarily	
toothed or friction gearing, links or levers, and cams, or	
members of at least two of these types, the movements of	
two or more independently moving members being	
combined into a single movement	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 25/04

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers for conveying rotary motion.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a cam gearing comprising only sphere (1) with a cam groove and disc (5) with cam follower pin (6). Rotary motion (4) of sphere (1) causes rotary motion (7) of disc (5).

PROJECT RP10485

Figure 2 illustrates a screw-and-nut gearing (10) comprising only nut (12) and circular screw (14). Rotary motion (R1) of nut (12) causes rotary motion (R2) of circular screw (14).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion	F16H 1/00
Gearing for conveying rotary motion with constant gear ratio by	F16H 13/00
friction between rotary members	
Step-by-step mechanisms without freewheel members, for	F16H 27/045
converting continuous rotation into a step-by-step rotary	
movement, comprising a member with partially helical tracks	

DATE: MAY 1, 2025

PROJECT RP10485

Gearings for conveying rotary motion with intermittently-driving	F16H 29/00
members, e.g. with freewheel action	
Wave gearings, e.g. harmonic drive transmissions	F16H 49/001

F16H 25/06

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with gears having	F16H 1/32
orbital motion where the central axis of the gearing lies inside the	
periphery of an orbital gear, e.g. eccentric gearing or cycloidal	
gearing	
Wave gearings, e.g. harmonic drive transmissions	F16H 49/001

F16H 2025/063

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

1b.

Figures 1a and 1b illustrate a cam gearing comprising rotary input (90) and rotary output (100). Balls (80) engage opposite cam discs, e.g. discs (110 and 112).

PROJECT RP10485

2.

Figure 2 illustrates a cam gearing comprising a rotary input and rotary output. Balls (9) and (10) engage opposite cam discs (1) and (2).

F16H 25/08

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers for interconverting rotary motion and reciprocating motion.

Note: When reversing reciprocating motion, input rotary motion (which is defined as indefinitely continuous rotary motion) would cause an automatic reversal of the reciprocating motion. If the input rotational direction is changed in order to cause reversal of the reciprocating motion, the input motion is an oscillating motion (which is defined as alternately forward and backward rotary motion).

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a gearing comprising only a cam (7) and a cam follower (12). Rotary motion of shaft (5) is converted into reciprocating motion of rod (14) see arrows (15) via the cam (7) and cam follower (12).

References

Limiting references

This place does not cover:

Wobble-plate gearings: Oblique-crank gearings	F16H 23/00
······································	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings comprising primarily only cams, cam-followers	F16H 25/18
and screw-and-nut mechanisms for conveying or	
interconverting oscillating or reciprocating motions	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 25/122

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing comprising only a cam shaft (3) and a cam follower (1). Rotary motion of cam shaft (3) is converted into reciprocating motion of output (6). The reciprocation is along and parallel to the axis of rotation. Cam shaft (3) has an endless helical groove (4) which provides an automatic reversal of output (6) via cam follower (1).

F16H 25/125

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

Figures 1a and 1b illustrate a gearing comprising only a cam shaft (4) and a cam follower (5). Rotary motion of shaft (2) is converted into reciprocating motion of shaft (3). The reciprocation is along and coaxial to the axis of rotation. Cam shaft (4) includes a cam provided on an end surface of rotary cam shaft (4).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2025/127

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

Figure 1a illustrates a gearing comprising a fixed base (11), cam shafts (22), (23) and (24), a cam follower comprised of apertures (A-M) and an output shaft (12).

DATE: MAY 1, 2025

PROJECT RP10485

Reciprocating motion of each of the cam shafts (22), (23) and (24) is induced by respective solenoids (29). This motion is converted into rotary motion of output shaft (12) see arrow (30) via lateral force (39). The reciprocation is along and parallel to the axis of rotation.

1b.

PROJECT RP10485

1c.

F16H 25/14

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers for interconverting rotary motion and reciprocating motion, with reciprocation occurring in a direction perpendicular to the axis of rotation.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a gearing comprising only a cam (22) and a cam follower (20). Rotary motion of cam (22) is converted into reciprocating motion of cam follower (20). Reciprocation is perpendicular to the axis of rotation of the cam (22).

PROJECT RP10485

Figures 2a and 2b illustrate a gearing comprising only a cam (38) and a cam follower (36). Rotary motion of cam shaft (32) is converted into reciprocating motion of piston (122). Reciprocation is perpendicular to the axis of rotation of cam shaft (32).

DATE: MAY 1, 2025

PROJECT RP10485

References

Limiting references

This place does not cover:

Crank or eccentric gearings comprising primarily only links	F16H 21/36
or levers without swinging connecting-rod	

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Valve drives by means of cams, camshafts, cam discs,	F01L 1/04
eccentrics or the like	

F16H 25/16

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers for interconverting rotary motion and oscillating motion.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

Figures 1a and 1b illustrate a gearing comprising primarily only a cam (h) and a cam follower (i). Rotary motion of shaft (d) is converted into oscillating motion of lever (a) and output shaft (b).

It is noted that the gearing comprises a single lever (a). However, the primary functioning of the gearing consists of a cam and cam follower, and the presence of a

DATE: MAY 1, 2025

PROJECT RP10485

single lever is not sufficient to consider the gearing as more than primarily cams and cam followers.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Step-by-step mechanisms without freewheel members, for converting continuous rotation into a step-by-step rotary movement, comprising a member with partially helical tracks	F16H 27/045
Combinations of mechanical gearings, not provided for in groups F16H 1/00 - F16H 35/00, comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types	F16H 37/12

F16H 25/18

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers, for conveying or interconverting oscillating or reciprocating motions.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1.

Figure 1 illustrates a gearing comprising only a cam (12) and a cam follower (23). Oscillating motion of cam (12) is converted into reciprocating motion (31) and (33) of shaft (22).

DATE: MAY 1, 2025

PROJECT RP10485

Figure 2 illustrates a gearing comprising primarily only a cam (11) and a cam follower (16). Oscillating motion of shaft (7) is conveyed into oscillating motion of lever (4).

It is noted that the gearing comprises a single lever (4). However, the primary functioning of the gearing consists of a cam and cam follower, and the presence of a single lever is not sufficient to consider the gearing more than primarily cams and cam followers.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of mechanical gearings, not provided for in	F16H 37/12
groups F16H 1/00 - F16H 35/00, comprising primarily	
toothed or friction gearing, links or levers, and cams, or	
members of at least two of these types	

F16H 25/183

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a gearing comprising cams in the form of wedges. A horizontal reciprocating movement of the lower wedge is conveyed into a vertical reciprocating movement of the upper wedge.

Figure 2 illustrates a gearing comprising cams in the form of wedges (10), (12) and (14). A horizontal reciprocating movement of wedges (10) and (12) in opposite directions is conveyed into a vertical reciprocating movement of wedge (14).

PROJECT RP10485

Figure 3 illustrates a gearing comprising cams in the form of wedges (9), (7) and (8). A reciprocating horizontal movement of wedge (9) is conveyed into reciprocating horizontal movement of wedge (8) via ball (1) and wedge (7).

F16H 25/186

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

1b.

Figures 1a and 1b illustrate a gearing comprising only cam shaft (4a) and cam follower (5a), which convert oscillating motion of input (11) to reciprocating motion of output (2). Reciprocating motion of output (2) is along the axis of oscillation of input (11).

PROJECT RP10485

Figure 2 illustrates a gearing comprising only cam (2) and cam follower (3), which convert reciprocating motion of input (1) to oscillating motion of output (4). Reciprocating motion of output (4) is along the axis of oscillation of input (1).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Means for influencing the pressure between members in	F16H 13/14
friction gearing with constant ratio for automatically varying	
the pressure mechanically	
Means for controlling the torque transmitting capability of	F16H 61/66272
continuously variable gearing with endless flexible	
members	
Means for controlling the torque transmitting capability of	F16H 61/6649
continuously variable friction gearing	

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

- "Ball-ramp mechanism"
- "Clamping force generator", "axial force generator" or "thrust generator"

DATE: MAY 1, 2025

PROJECT RP10485

• "Cam disc" or "disk"

F16H 2025/204

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a gearing comprising primarily only a screw-and-nut mechanism. Guide members (16) move along guide surface (15) of the housing (2) to support and guide the nut (4).

PROJECT RP10485

2.

Figure 2 illustrates a gearing comprising primarily only a screw-and-nut mechanism having a nut (3) and a rotatable screw (53). Nut (3) comprises axial sliding means in the form of flat surfaces which slide on axial guide surfaces (86) and (87) of housing (81), thereby preventing rotation of nut (3) while at the same time allowing its axial movement.

F16H 25/2056

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Common movement by two screws or two nuts, e.g. two	F16H 2025/2059
connected screws with opposite thread direction	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 27/02

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a step-by-step mechanism having a reciprocating rod (14) as an input member. Reciprocating movement of rod (14) and its attached pin (13) creates a step-by-step rotary movement of output member (1). During reciprocating movement of rod (14), output member (1) is at rest until the pin (13) arrives at groove surface (10b), as shown in illustration (A) and (B). When pin (13) impacts groove surface (10b) it forces output member (1) to rotate, as shown in illustration (C). Rotation of output member (1) stops when pin (13) arrives at groove surface (10c). Thereafter, during the continued reciprocating movement of rod (14) and its pin (13), output member (1) is again at rest. Continuous reciprocation of rod (14) results in a stepwise rotation of output member (1).

Figure 2 illustrates a gearing including a rotary input gear (2) with interrupted toothing (8a) and (8b) and a reciprocating rack (3) as an output member. Continuous rotation of input gear (2) results in a stepwise linear movement of rack (3).
DATE: MAY 1, 2025

PROJECT RP10485

F16H 27/045

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a gearing including a rotary input member (30) with a helical rib (38) having tracks (39) and (40), and a rotary output member (35) with cam followers (36) which interact with tracks (39) and (40). Continuous rotation of input member (30) is converted into a step-by-step rotation of output member (35). When one of the followers (36) engages with a straight section of helical rib (38), output member (35) is at rest. When one of the followers (36) engages with a straight section of helical rib (38), output member (35) is at rest. When one of the followers (36) engages with an oblique section of helical rib (38), the helical rib (38) drives follower (36) such that output member (35) is rotated about an angle of 45°. Thus, the continuous rotation of input member (30) results in a stepwise rotation of output member (35).

References

Informative references

Cam gearings for conveying rotary motion	F16H 25/04
Cam gearings for interconverting rotary motion and	F16H 25/16
oscillating motion	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 27/06

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing including rotary input shaft (Δ 1) and rotary output shaft (Δ 2). Continuous rotation of input shaft (Δ 1) is converted into a step-by-step rotation of output shaft (Δ 2). When driving pin (13) is within one of driven slots (1210), (1220), (1230) or (1240), output shaft (Δ 2) is rotated about an angle of 90°. When driving pin (13) is outside of any driven slot, output shaft (Δ 2) is at rest. Thus, the continuous rotation of input shaft (Δ 1) results in a stepwise rotation of output shaft (Δ 2). This type of gearing is considered a Geneva drive.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 27/08

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing including a rotary input gear (2) with interrupted toothing (8) and a rotary output gear (3). Continuous rotation of input gear (2) results in a stepwise rotation of output gear (3).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 29/02

Definition statement

This place covers:

Gearings for conveying rotary motion from an input shaft to rotary motion of an output shaft, and including intermittently driving members, e.g. members with freewheel action. The intermittently driving members are located between one of the input and output shafts and an oscillating or reciprocating intermediate member. The intermittently driving members do not rotate with either of the input or output shafts.

References

Limiting references

This place does not cover:

Gearings for conveying rotary motion with intermittently	F16H 29/20
driving members, e.g. with freewheel action, the	
intermittently acting members being shaped as worms,	
screws or racks	
Gearings for conveying rotary motion with intermittently	F16H 29/22
driving members, e.g. with freewheel action, with automatic	
speed change	

F16H 29/04

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a crank CVT including a rotary driving shaft (4), a rotary driven shaft (5), an adjustable eccentric (6), several cranks (8) and a freewheel clutch (7) between each of the cranks (8) and the driven shaft (5). Each crank (8) is considered an oscillating intermediate member, which does not rotate with either the drive shaft (4) or driven shaft (5). Each freewheel clutch (7) is regarded as an intermittently-driving member between each of the cranks (8) and driven shaft (5).

F16H 29/12

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a gearing including levers (13) arranged between rotary driving shaft (1) and rotary driven shaft (5). Each lever (13) drives the driven shaft (5) only if it is the lever closest to teeth (7). Thus, each lever drives only intermittently and is considered as an intermittently-driving member between driving shaft (1) and driven shaft (5).

References

Limiting references

This place does not cover:

Gearings for conveying rotary motion with intermittently	F16H 29/20
driving members, e.g. with freewheel action, the	
intermittently acting members being shaped as worms,	
screws or racks	
Gearings for conveying rotary motion with intermittently	F16H 29/22
driving members, e.g. with freewheel action, with automatic	
speed change	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 29/16

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

1b.

Figure 1a illustrates a gearing including a driving shaft (20), a driven shaft (24) and levers (25). Each lever (25) drives the driven shaft (24) only if it is the lever closest to teeth (21). Thus, each lever drives only intermittently and is considered as an intermittently driving member between driving shaft (20) and driven shaft (24). The transmission ratio is changed by adjustment of the distance (eccentricity) between driving shaft (20) and driven shaft (20) and driven shaft (24). Figure 1b illustrates a transmission ratio different from 1:1, while Figure 1a illustrates a transmission ratio of 1:1.

F16H 31/002

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Spanners or wrenches of the ratchet type, for providing a	B25B 13/46
free return stroke of the handle	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 31/003

Definition statement

This place covers:

Mechanisms converting oscillating or reciprocating motion to rotary motion (or vice versa), which include movement in a stepwise, or step-by-step, manner such that an output member is alternately moving and at rest during continuous motion of an input member.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Step-by-step mechanisms without freewheel members	F16H 27/00
Gearings for conveying rotary motion with intermittently-	F16H 29/00
driving members, e.g. with freewheel action	

F16H 31/004

Definition statement

This place covers:

Step-by-step mechanisms for rotary motion including an intermittently driving member, wherein the intermittently driving member includes pawls driven by a rotary cam.

F16H 31/005

Definition statement

This place covers:

Step-by-step mechanisms for rotary motion including an intermittently driving member, wherein the intermittently driving member includes pawls driven by a reciprocating or oscillating transmission member.

DATE: MAY 1, 2025

PROJECT RP10485

References

Limiting references

This place does not cover:

Hand-driven ratchets	F16H 31/002
Step-by-step mechanisms for rotary motion with pawls	F16H 31/004
driven by a rotary cam	

F16H 31/006

Definition statement

This place covers:

Step-by-step mechanisms for rotary motion including an intermittently driving member, wherein the intermittently driving member includes friction means.

F16H 31/007

Definition statement

This place covers:

Mechanisms for linear motion which include movement in a stepwise, or step-by-step, manner such that an output member is alternately moving and at rest during continuous motion of an input member.

F16H 31/008

Definition statement

This place covers:

Step-by-step mechanisms for linear motion including an intermittently driving member, wherein the intermittently driving member includes friction means.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 33/20

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

For converting into a linear propulsion force, i.e. inertia motors	F03G 3/00
--	-----------

F16H 2035/001

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a toothed gearing including a pair of spur gears (1) and (2) which are eccentrically mounted.

PROJECT RP10485

Figure 2 illustrates a rack and pinion gearing having a pinion (4) which is eccentrically mounted.

3.

Figure 3 illustrates a belt-type transmission having a pulley (7) which is eccentrically mounted.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearing for conveying rotary motion with gears	F16H 1/32
having orbital motion in which the central axis of the	
gearing lies inside the periphery of an orbital gear, e.g.	
eccentric gearing or cycloidal gearing	
Gearings comprising primarily only links or levers with all	F16H 21/14
movement being in, or parallel to, a single plane, for	
conveying rotary motion by means of cranks, eccentrics or	
like members fixed to one rotary member and guided along	
tracks on the other	
Crank gearings or eccentric gearings comprising primarily	F16H 21/18
only links or levers with all movement being in, or parallel	
to, a single plane, for interconverting rotary motion and	
reciprocating motion	
Gearings for conveying rotary motion with intermittently-	F16H 29/04
driving members between one of the shafts and an	
oscillating or reciprocating intermediate member, not	
rotating with either of the shafts, in which the transmission	
ratio is changed by adjustment of a crank, an eccentric, a	
wobble-plate, or a cam, on one of the shafts	
Gearings or mechanisms for conveying rotary motion with	F16H 35/02
cyclically varying velocity ratio	

F16H 2035/103

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a pulley (12) includes a torque limiter (15) with breaking portions (24) and (25). If the torque exceeds a certain threshold, breaking portions (24) and (25) break such that torque transfer is interrupted and overload is prevented.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Couplings with safety member for disconnecting, e.g.	F16D 9/00
breaking or melting member	

F16H 2035/106

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Monitoring of overload conditions of gearing elements F16H 2057/016

DATE: MAY 1, 2025

PROJECT RP10485

F16H 37/02

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a transmission including an input shaft (20), an output shaft (55), and a combination of worm gearing (23) and (24) and belt-type gearing (60).

References

Informative references

Gearings for conveying rotary motion with variable gear	F16H 9/26]
ratio, or for reversing rotary motion, by endless flexible		
members, with members having orbital motion		

DATE: MAY 1, 2025

PROJECT RP10485

Special rules of classification

In F16H, a gearing with chains or toothed belts is treated as a friction gearing.

F16H 37/022

Definition statement

This place covers:

Combinations of mechanical gearings comprising essentially only toothed gearing combined with continuously variable friction gearing. The toothed gearing having orbital motion, whereby said combinations do not include power-split.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a gearing (2) which constitutes a combination of two mechanical gearings, i.e. a combination of a toroidal-type CVT (9 and 10) and a planetary reduction gear train (12) in series.

F16H 2037/023

Definition statement

This place covers:

Combinations of mechanical gearings comprising essentially only toothed gearing combined with continuously variable friction gearing [CVT]. The combination of gearing includes a serially arranged sub-transmission with at least two forward ratios and one reverse ratio.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a combination of mechanical gearings including a belt-type CVT 2 and a toothed sub-transmission (29) in series. Transmission (29) includes a reverse clutch (25), a brake (26) for a low forward speed and a clutch (28) for a high forward speed. Thus, the transmission (29) provides two forward ratios and one reverse ratio.

PROJECT RP10485

Figure 2 illustrates a combination of mechanical gearings including belt-type CVT (121) and a toothed sub-transmission (140) in series between input gear (120) and output gear (152). Transmission (140) includes a low forward speed, a high forward speed and a reverse speed. Thus, the transmission (140) provides two forward ratios and one reverse ratio.

F16H 2037/025

Definition statement

This place covers:

Combinations of mechanical gearings comprising essentially only toothed gearing combined with continuously variable friction gearing [CVT]. The CVT includes a ratio

DATE: MAY 1, 2025

PROJECT RP10485

coverage that is used more than once to produce the overall transmission ratio coverage, e.g. by shift to end of range, then change ratio in sub-transmission and shift CVT through range once again.

Illustrative example of subject matter classified in this place:

1a.

Figure 1a illustrates a transmission comprising a combination of mechanical gearings including a belt-type CVT (H) and toothed gearing (Z1), (Z2), (Z3), (Z4), (Z5) and (Z6). The transmission ratio of CVT (H) is (i_s), and the transmission ratio of the whole transmission (the combined gearing) is (i_G). The CVT ratio (i_s) is shifted through its range from 0.5 to 2, then the toothed gearing is shifted at whole transmission ratio (i_G) of 2. Thereafter, the CVT ratio (i_s) is shifted through its range in the other direction, i.e. from 2 to 0.5. In other words, the CVT (H) is shifted through its range, the toothed gearing is then shifted, and the CVT (H) is shifted through its range again.

PROJECT RP10485

1b.

F16H 2037/026

Definition statement

This place covers:

Combinations of mechanical gearings comprising essentially only toothed gearing combined with continuously variable friction gearing [CVT]. The layout of the combined gearing includes particular features of a reversing gear, e.g. to achieve compact arrangement.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a combination of three mechanical gearings including a belt-type CVT 22, a toothed input gearing (11) and (12), and a forward-reverse output unit (40). Forward-reverse output unit (40) includes reversing gear (42).

PROJECT RP10485

Figure 2 illustrates a combination of mechanical gearings including a belt-type CVT (18) and a toothed gearing comprising a planetary gear train (16). Brake (B1) is used to provide a reverse speed in planetary gear train (16).

F16H 2037/028

References

Informative references

CVT's provided with at least two forward and one reverse	F16H 2037/023
ratio in a serially arranged sub-transmission	

DATE: MAY 1, 2025

PROJECT RP10485

Combinations of mechanical dearings comprising only	E16H 37/06
Combinations of mechanical gearings comprising only	1 1011 37/00
toothed or friction gearings with a plurality of driving or	
driven shafts, or with arrangements for dividing torque	
between two or more intermediate shafts	

F16H 37/04

Definition statement

This place covers:

Combinations of toothed gearings only, not provided for in groups F16H 1/00 - F16H 35/00, for conveying rotary motion without arrangements, e.g. differential gearing, for dividing torque between two or more intermediate shafts. It is noted that planetary gear trains work either as differential gearing (i.e. as summing or distributing differentials) or as reduction or step-up gearing.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a combination of toothed gearings only including input shaft (16), output shaft (18), reduction planetary gear train (28), (34), (30), (32) having a fixed ring gear (30), and multi-speed bevel gearing (20), (22), (26).

References

Limiting references

This place does not cover:

Combinations of mechanical gearing with a plurality of	F16H 37/06
driving or driven shafts, or with arrangements for dividing	
torque between two or more intermediate shafts	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings comprising essentially only toothed gears or	F16H 19/00
friction members and not capable of conveying indefinitely	
continuing rotary motion	

F16H 37/041

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a combination of toothed gearings comprising planetary gear train (64), (68), (70) and (72) and spur gearing (86), (90), (94) and (100). The gearing does not include any means to vary the gear ratio.

References

Informative references

Toothed gearings for conveying rotary motion, with fixed	F16H 1/20
gear ratio, without gears having orbital motion, involving	
more than two intermeshing members	

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearings for conveying rotary motion, with fixed	F16H 1/46
gear ratio, including systems consisting of a plurality of	
gear trains each with orbital gears	

F16H 37/042

Definition statement

This place covers:

Combinations of toothed change gear transmissions in group arrangement, e.g. change gear transmissions having a range and/or split group.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable	F16H 3/64
gear ratio or for reversing rotary motion using gears having	
orbital motion composed of a number of gear trains, the	
drive always passing through all the trains, each train	
having not more than one connection for driving another	
train	

F16H 2037/044

Definition statement

This place covers:

Combinations of toothed change gear transmissions in group arrangement without gears having orbital motion comprising a separate gearing unit for shifting between forward or reverse.

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearings for reversal only, without gears having	F16H 3/14
orbital motion, exclusively or essentially with continuously	
meshing gears, that can be disengaged from their shafts	
Toothed gearings for reversal only, without gears having	F16H 3/18
orbital motion, essentially with both gears that can be put	
out of gear and continuously meshing gears that can be	
disengaged from their shafts	
Toothed gearings for reversal only, without gears having	F16H 3/40
orbital motion, exclusively or essentially using gears that	
can be moved out of gear.	
Toothed gearings for reversal only, with gears having	F16H 3/60
orbital motion, having only two central gears, connected by	
orbital gears	
Combinations of toothed gearing including forward-reverse	F16H 2037/049
units with forward and reverse gears for achieving multiple	
forward and reverse gears, e.g. for working machines	

F16H 2037/045

Definition statement

This place covers:

Combinations of toothed change gear transmissions in group arrangement, without gears having orbital motion, comprising a separate gearing unit for shifting between high and low ratio range.

References

Informative references

Combination of toothed gearings with an additional	F16H 37/046
planetary gear train, e.g. creep gear, overdrive	
Combinations of toothed gearing including forward-reverse	F16H 2037/049
units with forward and reverse gears for achieving multiple	
forward and reverse gears, e.g. for working machines	

DATE: MAY 1, 2025

PROJECT RP10485

Transmissions for multiple ratios comprising at least one	F16H 2200/0026
creep low gear, e.g. additional gear for extra low speed or	
creeping	

F16H 37/046

Definition statement

This place covers:

Combination of toothed gearings that are change gear transmissions in group arrangement. One of the change gear transmissions includes a planetary gear train, e.g. as range group.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a combination of toothed gearing including variable ratio nonorbital toothed gearing in group arrangement with a variable ratio planetary gear train.

References

Informative references

Transmissions for multiple ratios comprising at least one	F16H 2200/0026
creep low gear, e.g. additional gear for extra low speed or	
creeping	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2037/047

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a combination of toothed gearing including non-orbital toothed gearing (STS1), (STS2) and orbital toothed gearing (PS1), (PS2) and (PS3). The planetary gear trains (PS1), (PS2) and (PS3) are coaxial with shaft (AN), and there are two drive connections via (STS1) and (STS2) to second shaft (AB) parallel to shaft (AN).

PROJECT RP10485

2.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 2 illustrates a combination of toothed gearing including non-orbital toothed gearing (\ddot{U}_1), (\ddot{U}_2) and orbital toothed gearing (P1), (P2) and (P3). The planetary gear trains (P1) and (P3) are coaxial with shaft (2), and there are two drive connections via (\ddot{U}_1) and (\ddot{U}_2) to second shaft (3) parallel to shaft (2).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with variable	F16H 3/66
gear ratio or for reversing rotary motion using gears having	
orbital motion composed of a number of gear trains without	
drive passing from one train to another	

F16H 2037/048

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:
PROJECT RP10485

Figure 1 illustrates a combination of toothed gearing including non-orbital parallel shaft toothed gearing (a), (b), (c), (d), (e), (f), (g) or (h) and orbital toothed gearing (P1), (P2) or (P3). The orbital gearing includes two drive connections via (S) and (L) to the parallel shaft gearing.

PROJECT RP10485

Figure 2 illustrates a combination of toothed gearing including non-orbital parallel shaft toothed gearing (T2) and orbital toothed gearing (T1). The orbital gearing includes two drive connections via (6) and (8) to the parallel shaft gearing.

F16H 2037/049

Definition statement

This place covers:

PROJECT RP10485

Figure 1a illustrates a combination (100) of a multi-speed transmission (200) having gears with orbital motion, and a forward/reverse unit (600) not having gears with orbital motion. Forward/reverse unit (600) achieves multiple forward gear ratios of combination (100) and multiple reverse gear ratios of combination (100).

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for reversal only, without gears having	F16H 3/14
orbital motion, exclusively or essentially with continuously	
meshing gears that can be disengaged from their shafts	
Toothed gearings for reversal only, without gears having	F16H 3/18
orbital motion, essentially with both gears that can be put	
out of gear and continuously-meshing gears that can be	
disengaged from their shafts	
Toothed gearings for reversal only, without gears having	F16H 3/40
orbital motion, exclusively or essentially using gears that	
can be moved out of gear	
Gearings for reversal only using gears having orbital	F16H 3/60
motion	

DATE: MAY 1, 2025

PROJECT RP10485

Toothed gearing combined with continuously variable	F16H 2037/026
friction gearing with particular features of reversing gear,	
e.g. to achieve compact arrangement	
Change gear transmissions in group arrangement; without	F16H 2037/044
gears having orbital motion; Comprising a separate gearing	
unit for shifting between forward or reverse	

F16H 37/065

Definition statement

This place covers:

Combinations of essentially only toothed or friction gearings with a plurality of driving or driven shafts, without a differential gearing.

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a combination of two belt-type CVTs (23-25) and (37-39) with two planetary reduction gear trains (27-30) and (41-44). The combination comprises two input or drive shafts (22) and (36), and two output or driven shafts (33) and (47).

References

Limiting references

This place does not cover:

Combinations of toothed or friction gearing with differential	F16H 37/0806
gearing and with a plurality of driving or driven shafts	

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Arrangement or mounting of electrical propulsion units comprising more than one electric motor	B60K 1/02
Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or type of power take-off	B60K 17/28
Arrangement or mounting of transmissions in vehicles for driving both, front and rear wheels, e.g. four wheel drive vehicles	B60K 17/34

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with constant gear ratio having a plurality of driving or driven shafts	F16H 1/22
Differential gearings	F16H 48/00
Transmissions for multiple ratios comprising a power take	F16H
off shaft	2200/0004

DATE: MAY 1, 2025

PROJECT RP10485

F16H 37/0806

Definition statement

This place covers:

Combinations of mechanical gearings, not provided for in groups F16H 1/00 - F16H 35/00, comprising essentially only toothed or friction gearings, with differential gearing, and with at least two driving shafts or at least two driven shafts.

PROJECT RP10485

The Figure illustrates a combination of two bevel gear sets (22), (8), (23), (14), a planetary gear set (10), (13), (18), and a bevel gear axle differential (3). The combination comprises two driving shafts (20) and (21) as well as two driven shafts (1).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

DATE: MAY 1, 2025

PROJECT RP10485

Multiple interconnected differential sets	F16H 48/05
Differential gearings using electric or hydraulic motors to	F16H 2048/364
intentionally generate a speed difference between outputs	

F16H 37/0813

Definition statement

This place covers:

Combinations of mechanical gearings comprising essentially only toothed or friction gearings, with summing or distributing planetary gearing, with a plurality of driven or output shafts and having only one driving or input shaft. For example, an axle differential in combination with another type of toothed or friction gearing.

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of friction gearing (606), toothed planetary gearing (625) and parallel shaft gearing (601), (602), (603) and (604). The gearing comprises

DATE: MAY 1, 2025

PROJECT RP10485

one driving or input shaft and two driven or output shafts. Friction gearing (606) distributes power supplied by the input shaft to left parallel gearing (601), (603) and right parallel gearing (602), (604), and planetary gearing (625) sums torque from the input shaft and the parallel gearing (604).

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Arrangement or mounting of differential gearings in	B60K 17/16
vehicles	
Arrangement or mounting of transmissions in vehicles for	B60K 17/346
driving both front and rear wheels, e.g. four wheel drive	
vehicles, having a differential gear as a transfer gear	
Arrangement or mounting of electrical propulsion units with	B60K 2001/001
one motor mounted on a propulsion axle for rotating right	
and left wheels of this axle, e.g. electric axles	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with constant gear ratio having a plurality of driving or driven shafts, or with arrangements for dividing torque between two or more intermediate shafts	F16H 1/22
Differential gearing per se	F16H 48/00

Special rules of classification

Combinations of toothed or friction gearings with axle differentials are only classified in F16H 37/0813 if they constitute new and unobvious or non-trivial information. In vehicle powertrains, almost any multi-speed transmission is followed by an axle differential. Consequently, the mere presence of axle differentials merely constitutes trivial technical information and is, thus, not classified in F16H 37/0813.

It is noted that electric axles are classified in B60K 1/00. It is further noted that combinations of hydraulic gearing and mechanical gearing are classified in F16H 47/00.

DATE: MAY 1, 2025

PROJECT RP10485

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

differential gearing	planetary gear trains with differential action, i.e. so-
	called summing or distributing planetary gear
	trains, e.g. for power split. It does not refer to
	planetary gear trains in which one of its elements,
	e.g. sun gear, ring gear or planet carrier, is
	permanently fixed to the housing, since this would
	not provide a differential action.

F16H 37/082

Definition statement

This place covers:

Planetary reduction gears in addition to the planetary gearing for dividing or summing torque.

PROJECT RP10485

The Figure illustrates a combination of a chain gearing (8) with a differential gearing (20). The combination having a planetary reduction gear (12), (14) and (16). The combination comprises one driving or input shaft (8) and left and right shafts of differential (20) as two driven or output shafts.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 37/0826

Definition statement

This place covers:

Combinations of mechanical gearings, not provided for in groups F16H 1/00 - F16H 35/00, comprising essentially only toothed or friction gearings, with a plurality of driving or driven shafts, with differential gearing, with only one output shaft.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a combination of a toothed two-speed spur gearing (150) having two freewheels (141a) and (142a), a toothed single-speed gearing (160), and a toothed summing planetary gear set (130). The combination comprises two driving or input shafts (151) and (161) and one driven or output shaft (123). Planetary gear set or differential (130) sums torque inputted by sun gear (111) and ring gear (130), and outputs the summed torque via planet carrier (122).

2a.

PROJECT RP10485

PROJECT RP10485

Figures 2a and 2b illustrate a combination of two worm gearings (113), (143) and (124), (144), a toothed summing planetary gear set (110), (120), (130) inside casing (100), and a toothed spur gearing (131), (132). The combination comprises two driving or input shafts (141) and (142) and one driven or output shaft (133). Planetary gear set or differential (110), (120), (130) sums torque inputted to sun gear (111) and planet carrier (122) and outputs the summed torque via ring gear (130).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed planetary transmissions with an externally powered electric machine as a secondary drive, in order to	F16H 3/724
vary speed continuously	
Differential gearings characterised by intentionally	F16H 2048/364
generating speed difference between outputs using electric	
or hydraulic motors, e.g. torque vectoring	
Arrangement or mounting of electrical propulsion units	B60K 1/02
comprising more than one electric motor	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 37/0833

Definition statement

This place covers:

Combinations of toothed or friction gearings including planetary gearing for dividing or summing torque between two or more torque paths, e.g. power split.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a power-split transmission including a combination of parallel toothed gearing (6), (8) with variable gear ratio and a toothed summing planetary gear set (10). Torque from driving or input shaft (2) is divided into two internal torque paths (6) and (8), and summing planetary gear set or differential (10) sums the torque from the two internal torque paths and outputs the total torque to driven or output shaft (20).

PROJECT RP10485

2.

Figure 2 illustrates a power-split transmission including a combination of parallel toothed gearing (21-26) with variable gear ratio and a toothed distributing planetary gear set (11). Torque of driving or input shaft (10) is divided by distributing planetary gear set or differential (11) into two internal torque paths (12) and (13), and combined at driven or output shaft (14).

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Series-parallel type hybrid transmissions of the differential	B60K 6/445
gearing distribution type	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Planetary gearing with a secondary drive, e.g. regulating	F16H 3/72
motor, in order to vary speed continuously	

Special rules of classification

It is noted that a summing planetary gear set (or differential) that sums the input torque of a main power source (e.g. an internal combustion engine) and the input torque of a

DATE: MAY 1, 2025

PROJECT RP10485

secondary power source (e.g. an electric machine) does not constitute an "arrangement for dividing torque between two intermediate shafts, i.e. with two or more internal power paths", since this would not include two or more internal power paths. Instead, the summing planetary gear set (or differential) would create a single input shaft to the transmission which sums the torque from both power sources.

F16H 37/084

Definition statement

This place covers:

Power-split transmissions including summing or distributing planetary gearing and with a CVT in at least one torque path.

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a combination of a distributing planetary gear set (14) and a nonspecific variator (16) as a CVT. Torque of driving or input shaft (10) is divided by distributing planetary gear set or differential (14) into two internal power paths (14A1) and (14A2). Second power path (14A2) includes variator (16). Torque of said two internal power paths (14A1) and (14A2) is summed at point (18) of driven or output shaft (12).

PROJECT RP10485

2.

Figure 2 illustrates a combination of a summing differential (3), (19), (20) and (21) and a variator (23) as a CVT. Torque of driving or input shaft (1) is divided into two internal power paths (3) and (4). The first internal power path (4) includes CVT (23), and the second internal power path (3) bypasses CVT (23). Torque of said two internal power

DATE: MAY 1, 2025

PROJECT RP10485

paths (3) and (4) is summed at driven or output shaft (22) by summing differential (3), (19), (20) and (21).

Special rules of classification

Indented subgroups F16H 37/0846, F16H 37/0853 and F16H 37/086 are for classifying the type of CVT used. Indented subgroups F16H 2037/0866, F16H 2037/0873, F16H 2037/088 and F16H 2037/0886 are for classifying the type of differential gearing used, e.g. distributing or summing planetary gear sets.

F16H 37/0846

Definition statement

This place covers:

Power-split transmissions including summing or distributing planetary gearing and with a CVT using endless flexible members in at least one torque path.

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a combination of a summing planetary or differential gearing (12) and a belt-type CVT (14), (16) and (18). Torque from input shaft (4) is divided into two internal power paths (14-26) and (8). The first internal power path (14-26) contains belt-type CVT (14), (16) and (18) and the second internal power path (8) bypasses the belt-type CVT (14), (16) and (18). The torque from the two internal power paths (14-26) and (8) is summed by summing planetary gear set or differential (12) and output to output shaft (6).

F16H 37/0853

Definition statement

This place covers:

Power-split transmissions including summing or distributing planetary gearing and with a CVT in at least one torque path. The CVT uses friction between rotary members, and has one member of uniform effective diameter cooperating with two or more parts of a second member.

PROJECT RP10485

The Figure illustrates a combination of a summing planetary or differential gearing (625) and a ball-type friction CVT (606). Ball-type CVT (606) includes balls (610) of uniform effective diameter cooperating with different parts of the input member of the CVT (606). Ball-type CVT (606) distributes power supplied by the input shaft to left parallel gearing (601), (603) and right parallel gearing (602), (604), and planetary gearing (625) sums torque from the input shaft and the parallel gearing (604).

F16H 37/086

Definition statement

This place covers:

Power-split transmissions including summing or distributing planetary gearing and with a CVT in at least one torque path. The CVT uses two coaxial friction members that cooperate with one or more intermediate friction members.

PROJECT RP10485

1.

Figure 1 illustrates a combination of a summing planetary or differential gearing (8), (9), (30) and a toroidal-type CVT which includes two coaxial friction members (414) and (416) with intermediate friction members (418). Torque from input shaft (4) is divided into two internal power paths (414), (418), (416), (410), (28), (32) and (8). The first internal power path (414), (418), (416), (410), (28), (32) contains toroidal-type CVT (414), (416), (416), (418) and the second internal power path (8) bypasses toroidal-type CVT (414), (416), (416), (418). The torque from the two internal power paths (414), (418), (416), (410), (28), (32) and (8) is summed by summing planetary gear set or differential (8), (9), (30) and output to output shaft (6).

PROJECT RP10485

Figure 2 illustrates a combination of a distributing planetary or differential gearing (706) and a ball-type CVT (703) which includes two coaxial friction members (704) and (705) with tiltable balls as intermediate friction members. Torque from input shaft (701) is divided by distributing planetary gear set or differential (706) into two internal power paths (710) and (707). The first internal power path (710) contains ball-type CVT (703) and the second internal power path (707) bypasses ball-type CVT (703). Torque from the two internal power paths (710) and (707) and (707) is summed at output shaft (702).

F16H 2037/0866

Definition statement

This place covers:

Power-split transmissions including distributing planetary gearing and with a CVT in at least one torque path. The CVT is either connected to or connectable with the output shaft.

DATE: MAY 1, 2025

PROJECT RP10485

1.

Figure 1 illustrates a combination of a distributing planetary or differential gearing and a non-fluid CVT. Torque from the input shaft is divided by the distributing planetary gear set or differential into two internal power paths. Torque from the two internal power paths is summed at the output shaft.

Figure 2 illustrates a combination of a distributing planetary gear set or differential (15) and a ball-type CVT (12). Torque from input shaft (11) is divided into two internal power paths by the distributing planetary gear set or differential (15), and is summed at the output shaft (19).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2037/0873

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of a distributing planetary gear set or differential (14) and a non-fluid CVT (16). The combination comprises switching means (K1), (K2) and (K3). In a drive mode with (K2) and (K3) closed, torque from input shaft (10) is divided by distributing planetary gear set or differential (14) into two power paths, i.e. a CVT path (14A2) and a CVT-bypass path (14A1). Torque from these two paths is summed at point (18) on output shaft (12).

F16H 2037/088

Definition statement

This place covers:

Power-split transmissions including summing planetary gearing and with a CVT in at least one torque path. The CVT is either connected to or connectable with the input shaft.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a combination of a summing planetary or differential gearing and a non-fluid CVT. Torque from the input shaft is divided into two power paths. Torque from the two power paths is summed by the summing planetary gear set or differential and output to the output shaft.

2.

Figure 2 illustrates a combination including a summing planetary gear set or differential (12) and a belt-type CVT (10). Input torque is divided into two internal power paths, and summed by summing planetary gear set or differential (12) and output to the output shaft (6).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2037/0886

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

1a.

Figure 1a illustrates a combination of a summing planetary gear set or differential (RS1), (RS2) and a non-fluid CVT (12). The combination comprises switching means (B1), (B2) and (K1) for switching between three drive modes (V1), (V2) and (R1). In drive mode (V2), power of input shaft (1) is divided into two power paths. Torque from these two paths is summed by summing planetary gear set or differential (RS1), (RS2) and output to output shaft (2).

DATE: MAY 1, 2025

PROJECT RP10485

1b.

	(engaged shifting elements)		
(mode)	(brakes)		(clutch)
	B1	B2	K1
V1	Х		
V2			Х
R1		Х	

F16H 2037/0893

Definition statement

This place covers:

Power-split transmissions including summing or distributing planetary gearing and with a CVT in at least one torque path. The transmission includes a speed ratio where the output shaft speed is zero while the individual CVT ratio is different from zero, i.e. a "geared neutral" speed ratio.

PROJECT RP10485

Figure 1a illustrates a power-split transmission including a combination of a toroidaltype CVT (8), (9) and planetary or differential gearing (16), (30). The overall ratio of the transmission may be changed from reverse speed ratio R through zero speed ratio N to forward speed ratio FL merely by changing the ratio of the CVT. At speed ratio N, the speed of output shaft (40) is zero while the speed of input shaft (1) is different from zero and the ratio of the toroidal CVT (8) and (9) is different from zero. The speed ratio N is otherwise known as "geared neutral" since this results in zero rotation speed of the output shaft while the input shaft is rotating.

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control functions within gearing to prevent gear creeping,	F16H 2061/207
or to provide transmission control during standstill, by	
neutral control	

Glossary of terms

In patent documents, the following words/expressions are often used with the meaning indicated:

geared neutral	input shaft speed is different from zero though	
	output shaft speed is zero. It is noted that this	
	enables drive-off without using a torque converter	
	or disconnecting clutch.	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 37/10

Definition statement

This place covers:

Combinations of essentially only toothed or friction gearings with planetary gearing for dividing or summing torque between two or more torque paths, e.g. power split. The combination includes planetary gearing for dividing or summing torque at both ends of an intermediate shaft.

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of a ball-type CVT (100') with two planetary or differential gearings (PGU1) and (PGU2). Torque of the input shaft is divided at distributing planetary gear set (PGU1), summed at summing planetary gear set (PGU2), and output to the output shaft. The shaft which connects the sun gear of distributing planetary gear set (PGU1) with the carrier of summing planetary gear set (PGU2) functions as a first intermediate shaft, and the shaft which connects the carrier of distributing planetary gear set (PGU1) with the sun gear of summing planetary gear set (PGU2) functions as a second intermediate shaft.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of mechanical gearings, not provided for in	F16H 37/0806
groups F16H 1/00 - F16H 35/00, comprising essentially	
only toothed or friction gearings, with differential gearing	
and with a plurality of driving or driven shafts	

F16H 2037/101

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a power-split transmission including a combination of two summing/distributing planetary or differential gearings and a CVT. The two summing/distributing planetary gear sets or differentials are at each end of the CVT in the torque flow. Torque from the input shaft is divided at distributing planetary gear set or differential (1), summed at summing planetary gear set or differential (2), and output to the output shaft.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2037/102

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of two summing/distributing planetary or differential gearings and a CVT. Torque from the input shaft is divided at distributing planetary gear set or differential (1), summed at summing planetary gear set or differential (2), and output to the output shaft. The output shaft is connected to the outputs of both of distributing planetary gear set or differential (1) and summing planetary gear set or differential (2).

F16H 2037/103

Definition statement

This place covers:

Power split variators with each end of the CVT connected or connectable to the same Ravigneaux set.

PROJECT RP10485

1.

Figure 1 illustrates a power-split transmission including a combination of a summing/distributing Ravigneaux set and a CVT. Both the input and output of the CVT are connected to the summing/distributing Ravigneaux set. Torque from the input shaft is divided at the Ravigneaux set, summed at the Ravigneaux set, and output to the output shaft.

PROJECT RP10485

Figure 2 illustrates a power-split transmission including a combination of a summing/distributing planetary gear set (4) and a belt-type CVT (32). A first end (40) of the CVT (32) is connected to the sun gear (24) of planetary gear set (4) via gear (39), and a second end (38) of the CVT (32) is connected to the ring gear (22) of planetary gear set (4) via gear (37). Planetary gear set (4) includes four connections to other part of the transmission, specifically ring gear (22), carrier (12), sun gear (24), and ring gear (23).

F16H 2037/104

Definition statement

This place covers:
DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a power-split transmission including a combination of two summing/distributing planetary or differential gearings and a CVT. The CVT has a first end connected to both of planetary gear set or differential (1) and planetary gear set or differential (2), and further has a second end connected to both of planetary gear set or differential (1) and planetary gear set or differential (2). Torque from the input shaft is divided at distributing planetary gear set or differential (1), summed at summing planetary gear set or differential (2), and output to the output shaft.

F16H 37/122

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a combination of two toothed gearings (151), (154) and (100), (152) and a lever (150). Rotary motion of input worm (154) is converted via lever (150) into oscillating motion of gear (100) and oscillating motion of output gear (152).

F16H 37/124

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a combination of two toothed gearings (2), (4) and (13), (14), a cam gearing (8), (12) and a lever (10). Rotary motion of input worm (2) is converted via gear (4) and cam (8) into oscillating motion of lever (10), and the oscillating motion of lever (10) is converted via pinion (13) and rack (14) into reciprocating motion of output rack (14).

F16H 37/126

Definition statement

This place covers:

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a combination of a belt-type gearing (22), (40), (30) and a lever gearing (26), (36). Rotary motion of input pulley (22) is converted via levers (26) and (36) into reciprocating motion of carriage (10). In other words, the combination 328

DATE: MAY 1, 2025

PROJECT RP10485

constitutes a guiding mechanism using levers (26) and (28) combined with a belt-type gearing (22), (40), (36) in order to provide straight line reciprocating output movement.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Crank gearings or eccentric gearings comprising primarily	F16H 21/365
only links or levers, all movement being in, or parallel to, a	
single plane, for interconverting rotary motion and	
reciprocating motion, without swinging connecting-rod, with	
orbital gearing having a ratio of 2:1 between central gear	
and orbital gear	

F16H 2037/128

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a combination of a belt-type gearing (41), (16), (42) and a lever gearing (12) and (14). Rotary motion of input pulley (41) is converted via levers (12) and

DATE: MAY 1, 2025

PROJECT RP10485

(14) into reciprocating motion of lever end (45). Pulley (42) partially orbits around pulley (41) such that belt-type gearing (41), (16), (42) constitutes a planetary gear using an endless flexible member (16). The ratio of pulley (41) to pulley (42) is 2:1. This combination conveys oscillating motion of input pulley (41) into reciprocating motion of lever end (45).

2a.

PROJECT RP10485

Figures 2a and 2b illustrate a combination a belt-type gearing (22), (40), (30) and a lever gearing (26) and (36). Rotary motion of input pulley (22) is converted via levers (26) and (36) into reciprocating motion of carriage (10). Pulley (30) partially orbits around pulley (22) such that belt-type gearing (22), (40), (30) constitutes a planetary gear using an endless flexible member (40). The ratio of pulley (22) to pulley (30) is 2:1. This combination conveys rotary motion of input pulley (22) into reciprocating motion of carriage (12).

F16H 37/14

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a combination of two cam gearings (2), (3), (4) and (6), (8), (9) and a friction gearing consisting of a rope (12) and two pulleys (13) and (14). Rotary motion of each of the two independently moving input cam shafts (1) and (7) is converted into a single reciprocating movement of output element (11).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings comprising primarily only links or levers, with or without	F16H 21/02
slides, the movements of two or more independently moving	
members being combined into a single movement	

DATE: MAY 1, 2025

PROJECT RP10485

Gearings comprising primarily only cams, cam followers and screw-	F16H 25/02
and-nut mechanisms, the movements of two or more independently	
moving members being combined into a single movement	
Screw mechanisms with both screw and nut being driven, i.e. screw	F16H 25/2018
and nut are both rotating	

F16H 37/16

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a combination of a cam gearing (28), (30), (32), a lever-type crank gearing (20), (22), (24), and a rack and pinion gearing (40) and (42). Rotary motion of

DATE: MAY 1, 2025

PROJECT RP10485

driving shaft (18) is converted via cam gearing (28), (30), (32) and rack and pinion gearing (40), (42) into rotary motion of driven shaft (14). Rotary motion of driving shaft (18) is also converted via crank gearing (20), (22), (24) into reciprocating motion of driven shaft (14).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Screw mechanisms with both nut and screw being driven, i.e. screw	F16H 25/2018
and nut are both rotating	

F16H 2045/007

Definition statement

This place covers:

A combination of fluid gearing for conveying rotary motion with couplings or clutches and comprising a damper in the power path between a turbine of the fluid gearing and a mechanical gearing unit or transmission.

PROJECT RP10485

The Figure illustrates a combination of a hydrodynamic torque converter (14) and a torque converter lock-up clutch (50). Two dampers 16 are in the power path between the turbine (32) and the input shaft (40) of a mechanical transmission.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2045/0247

Definition statement

This place covers:

The Figure illustrates a combination of a hydrodynamic torque converter (1), (2), (3) and a torque converter lock-up or bridging clutch (13). A torsional damper is connected with the turbine (2).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2045/0278

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of a hydrodynamic torque converter (10) and a torque converter lock-up clutch (18). Lock-up clutch (18) includes only two co-acting friction surfaces at (72).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2045/0284

Definition statement

This place covers:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a combination of a hydrodynamic torque converter (8) and a torque converter lock-up clutch (28). Lock-up clutch (28) includes multiple friction disks (34) and (35) each with friction material on opposing sides.

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

disk a friction member including friction surfaces on opposing sides

F16H 2045/0294

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a combination of a hydrodynamic torque converter (16) and a torque converter lock-up clutch (26). Lock-up clutch (26) includes only one disk with friction surfaces on opposing sides.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 47/02

Definition statement

This place covers:

Combinations of mechanical gearing with fluid gearing of the volumetric type, e.g. the fluid gearing including a pump and motor.

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of mechanical gearing (12000) with fluid gearing having a pump (12004) which feeds a motor (12008). In other words, the fluid gearing is of the volumetric type.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2047/025

Definition statement

This place covers:

Combinations of mechanical gearing with fluid gearing of the volumetric type. The fluid gearing includes more than a single pump or a single motor. For example, the volumetric gearing includes two motors and one pump, or two motors and two pumps. The mechanical gearing does not include orbital motion.

Illustrative examples of subject matter classified in this place:

1.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a combination of non-orbital mechanical gearing (14) with fluid gearing having two pumps (P1) and (P2) and two motors (M1) and (M2).

2.

Figure 2 illustrates a combination of non-orbital mechanical gearing (13000) with fluid gearing having two pumps (13004) and (13018) and one motor (13008).

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of orbital mechanical gearing with volumetric fluid	F16H 2047/045
gearing comprising a plurality of pumps and motors	

F16H 47/04

Definition statement

This place covers:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a combination of a summing planetary gear set (12) and fluid gearing including a pump (714) and a motor (716).

F16H 2047/045

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a combination of two summing planetary gear sets (13) and (14) and fluid gearing having a single pump (29) and two motors (32) and (33).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 47/06

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a combination of a mechanical gearing (3.1), (3.2), (3.3), (4) and a hydrokinetic retarder (19).

PROJECT RP10485

2.

Figure 2 illustrates a combination of a mechanical gearing (12-16) and a hydrokinetic torque converter (21).

F16H 47/065

Definition statement

This place covers:

PROJECT RP10485

Figure 1 illustrates a combination of gearings comprising a belt-type CVT (8), (16), (20) and a hydrokinetic torque converter (30). The combination of gearings also comprises other mechanical gearings.

PROJECT RP10485

2.

Figure 2 illustrates a combination of a belt-type CVT (2), spur gearing (7) and a hydrokinetic torque converter (3).

F16H 47/07

Definition statement

This place covers:

Combinations of non-orbital mechanical gearing with fluid gearing of the hydrokinetic type, using two or more power-transmitting fluid circuits.

PROJECT RP10485

The Figure illustrates a combination of non-orbital mechanical gearing with three hydrokinetic torque converters (C), (D¹), and (D²) acting as three power-transmitting fluid circuits.

References

Limiting references

This place does not cover:

Combinations of mechanical gearing comprising gearing of	F16H 47/065
the friction or endless flexible member type with fluid	
gearing being of the hydrokinetic type	
Combinations of mechanical gearing with fluid gearing	F16H 47/10
being of the hydrokinetic type, the mechanical gearing	
being of the type with members having orbital motion,	
using two or more power-transmitting fluid circuits	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 47/08

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a combination of a summing planetary gear set (14) and a hydrokinetic torque converter (12).

PROJECT RP10485

Figure 2 illustrates a combination of a distributing planetary gear set (L), a summing differential (P) and a hydrokinetic torque converter (W).

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of mechanical gearing comprising gearing of the	F16H 47/065
friction or endless flexible member type with fluid gearing being of	
the hydrokinetic type	

Special rules of classification

Combinations of mechanical gearings with hydrokinetic torque converters are only classified in F16H 47/08 if they constitute new and unobvious or non-trivial information relating to the combination of the mechanical gearing and the torque converter. In vehicle powertrains, almost any automatic multi-speed planetary transmission uses a hydrokinetic torque converter as a starting device. Consequently, in the vast majority of cases, the mere presence of such a hydrokinetic torque converter constitutes trivial technical information and is, thus, not classified in F16H 47/08.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 47/085

Definition statement

This place covers:

Combinations of orbital mechanical gearing with fluid gearing of the hydrokinetic type, with at least two mechanical connections between the hydrokinetic gearing and the mechanical transmission, e.g. with two turbines each connected to the orbital gearing.

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a combination of a summing planetary gear set (14) and a hydrokinetic torque converter (16). Turbine (24) is connected to ring gear (54) and stator (40) is connected to sun gear (50) such that there are two mechanical connections between planetary gear set (14) and torque converter (16).

PROJECT RP10485

2.

Figure 2 illustrates a combination of a multi-speed planetary transmission (PL1), (PL2) and a hydrokinetic torque converter (TC). Turbine (T1) is connected to planet carrier (C1) and turbine (T2) to connected to sun gear (S1) such that there are two mechanical connections between planetary transmission (PL1), (PL2) and torque converter (TC).

F16H 47/10

Definition statement

This place covers:

PROJECT RP10485

The Figure illustrates a combination of a planetary gear set (7), spur gearing (13) and three hydrokinetic torque converters (9), (10) and (25) which function as three power-transmitting fluid circuits.

F16H 47/12

Definition statement

This place covers:

PROJECT RP10485

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a gearing combination including input shaft (40), planet carrier (38), orbital gears (10) and (34) mounted on the carrier, drum (42), sun gear (22) and output shaft (44). The orbital gears (10) include vanes at (12A) that interact with the fluid in the drum for torque transmission.

PROJECT RP10485

Figure 2a illustrates a gearing combination including an input shaft (10), a planet carrier (22), orbital gears (28A), (34A) mounted on the carrier, housing (16), sun gear (30) and output shaft (14). The orbital gears include vanes (44) on part (34A) that interact with the fluid in the housing for torque transmission.

PROJECT RP10485

360
DATE: MAY 1, 2025

PROJECT RP10485

F16H 49/001

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a wave gearing (1) including a cup-shaped flexspline (3).

PROJECT RP10485

Figure 2 illustrates a wave gearing including flexspline (3) meshing with two ring gears (4) and (5).

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Harmonic drives for positioning means in programme-	B25J 9/1025
Harmonic drive of flexspline type in valve-gear	F01L 2001/3521
arrangements of machines or engines	

DATE: MAY 1, 2025

PROJECT RP10485

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings comprising primarily only cams, cam-followers	F16H 25/06
and screw-and-nut mechanisms for conveying rotary	
motion with intermediate members guided along tracks on	
both rotary members	
Gearings comprising primarily only cams, cam-followers	F16H 2025/066
and screw-and-nut mechanisms for conveying rotary	
motion with intermediate members guided along tracks on	
both rotary members, the intermediate members being	
rollers supported in a chain	
Profiling of flexible toothed member, e.g. harmonic drive	F16H 55/0833

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

• "Strain wave", "wave generator", "flexspline", "flexible spline" and "circular spline"

F16H 49/005

References

Informative references

Magnetic gearings, i.e. assembly of gears, linear or rotary,	H02K 49/102
by which motion is magnetically transferred without	
physical contact	
Dynamo-electric gears, i.e. dynamo-electric means for	H02K 51/00
transmitting mechanical power from a driving shaft to a	
driven shaft and comprising structurally interrelated motor	
and generator parts	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 55/08

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Measuring arrangements for measuring contours or	G01B 5/202
curvatures of gears	

F16H 55/283

Definition statement

This place covers:

Pressure yokes for biasing racks against pinion gears in order to take up backlash.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a rack and pinion gearing including a rack (16a) which is biased against a pinion gear (20a) using a pressure yoke (100) and a spring (102).

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Steering gears of rack-and-pinion type characterised by	B62D 3/123
pressure yokes	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 55/285

Definition statement

This place covers:

Pressure yokes with rollers or ball to reduce friction, for biasing racks against pinion gears in order to take up backlash.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

PROJECT RP10485

Figures 1a and 1b illustrate an example of a rack and pinion gearing including a rack (2) which is biased against pinion (6) using a pressure yoke (8) and spring (25). Balls (19) reduce friction on rack (2).

PROJECT RP10485

Figure 2 illustrates a rack and pinion gearing including a rack (4) which is biased against a pinion gear (2) by a pressure yoke (5) and a spring (7). Roller bearings (9) reduce friction on rack (4).

F16H 55/286

Definition statement

This place covers:

Pressure yokes with asymmetric layout of the yoke, for biasing racks against pinion gears in order to take up backlash.

DATE: MAY 1, 2025

PROJECT RP10485

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a rack and pinion gearing including a rack (1') which is biased against a pinion gear (3') using an asymmetric yoke (7') and a spring (9').

PROJECT RP10485

Figure 2 illustrates a rack and pinion gearing including a rack (29) which is biased against a pinion gear (28) using an asymmetric yoke (31) and a spring (33).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 55/288

Definition statement

This place covers:

Two or more pressure yokes, for biasing racks against pinion gears in order to take up backlash.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

374

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a rack and pinion gearing including a rack (120) which is biased against a pinion gear (111) using two yokes (170) and respective springs (160).

Figure 2 illustrates a rack and pinion gearing including a rack (41) which is biased against a pinion gear using two yokes (25) and respective springs (39).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 55/48

References

Limiting references

This place does not cover:

Means or measures for increasing adhesion of pulleys	F16H 55/38
Laminated pulleys	F16H 55/42
Split pulleys	F16H 55/46

Informative references

Attention is drawn to the following places, which may be of interest for search:

Manufacture of wood-rimmed wheels, e.g. cart wheels,	B27H 7/00
steering wheels	

F16H 55/563

Definition statement

This place covers:

Pulleys or friction discs with axially adjustable bearing parts and centrifugal masses for automatically changing the active diameter of the pulley or friction disc dependent on speed.

F16H 57/0006

References

Limiting references

This place does not cover:

Belt tension means with vibration damping means	F16H 7/0829
Construction of toothed members providing resilience or	F16H 55/14
vibration-damping	
Gearboxes characterised by means for reducing vibration	F16H 57/028
or noise	

DATE: MAY 1, 2025

PROJECT RP10485

Selector apparatus with means for suppression of vibrations or reduction of noise	F16H 59/0208
Preventing or reducing vibrations or noise, e.g. avoiding cavitations, in control of hydrostatic gearing	F16H 61/4183

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gears having orbital motion with arrangements for adjusting or taking-up backlash	F16H 1/2863
Idle pulley for belt tension means with vibration damping	F16H 7/1209
means	
Screw mechanisms with arrangements for adjusting or taking-up backlash	F16H 25/2003
Screw mechanisms with balls with arrangements for adjusting or taking-up backlash	F16H 25/2209
Silent gear profiles of toothed members and worms	F16H 2055/086
Toothed wheels with special devices for taking up backlash	F16H 55/18
Worms and worm gears with special devices for taking up backlash	F16H 55/24
Racks with special devices for taking up backlash	F16H 55/28
Means for providing resilience or vibration damping in chain sprocket wheels	F16H 2055/306
Pulleys with means for providing resilience or vibration	F16H 2055/366
damping	
Arrangements for adjusting or taking-up backlash not provided elsewhere	F16H 57/12

F16H 2057/0068

References

Informative references

Toothed wheels specially adapted for easy repair	F16H 2055/175

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2057/0075

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Modifying an existing transmission control from a	F16H 2061/0062
manufacturer for improvement or adaptation, e.g. by	
replacing a valve or an electric part	

F16H 2057/0081

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Detection of mechanical transmission failures	F16H 2057/018

F16H57/01

Definition statement

This place covers:

Devices attached to the gearbox or gearing for:

- informing of the end-of-life cycle;
- informing of the timing for triggering maintenance or parts replacement;
- monitoring wear or stress of gearing elements.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Testing of gearing or of transmission mechanisms G01M 13/02

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2057/014

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Arrangements for monitoring working conditions, e.g. wear,	F16D 2066/008
temperature, of clutches	

F16H 2057/016

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Monitoring of overload conditions of gearing elements	F16H 2035/106
---	---------------

F16H 57/02

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Actuator casings for screw mechanisms	F16H 2025/2031

F16H 57/02004

Definition statement

This place covers:

Gears mounted in the gearbox by positioning them relative to one another by rolling members or by specially adapted surfaces on the gears, e.g. by a rolling surface with the diameter of the pitch circle.

Illustrative examples of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

Figure 1 illustrates a pair of toothed spur gears (1) and (2) positioned relative to each other using left and right thrust collars attached to the surface of gear (2). The thrust collars are regarded as comprising specially adapted surfaces on the gears by which the two spur gears are positioned relative to one another.

PROJECT RP10485

Figure 2 illustrates a pair of toothed spur gears (1) and (2) positioned relative to each other. Spur gear (1) has projections (5) between its teeth which interact with grooves 6 between the teeth of spur gear (2). Projections (5) and grooves (6) are regarded as comprising specially adapted surfaces on the gears by which the two spur gears are positioned relative to one another.

3.

PROJECT RP10485

Figure 3 illustrates a pair of toothed spur gears (62) and (72) positioned relative to one another using rolling members (64) and (74). Due to bearing (66), rolling members (64) and (74) do not transfer any torque and maintain alignment of the gears.

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

- "Thrust cam" and "thrust collar"
- (German) "Druckkamm", (German) "Druckkammgetriebe", and (German) "Druckkämme"

F16H 2057/0203

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates housing components (27), (28) and (38) are welded together to form a common housing that houses both the crank of the engine and the belt-type CVT.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of engines with mechanical gearing	F02B 61/06
---	------------

F16H 2057/02078

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Transmission of mechanical power in wind motors	F03D 15/00
Transmission of power in wind motors	F05B 2260/40

F16H57/021

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

	Shafts; Bearings	F16C
--	------------------	------

F16H 57/022

References

Limiting references

This place does not cover:

DATE: MAY 1, 2025

PROJECT RP10485

For compensating misalignment of axes of toothed	F16H 1/26
gearings without orbital motion	
For compensating misalignment of axes of planetary gears	F16H 1/48

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gears having orbital motion with arrangements for	F16H 1/2863
adjusting or taking-up backlash	
Supports for screw mechanisms for compensating	F16H 2025/2445
misalignment or offset between screw and nut	
Support of worm gear shafts in gearboxes	F16H 2057/0213
Arrangements for adjusting or taking-up backlash not	F16H 57/12
provided elsewhere	
Gears specially adapted for positioning means of	B25J 9/103
programme-controlled manipulators with backlash-	
preventing means	

F16H57/023

Definition statement

This place covers:

Methods and procedures for mounting or installing gearing elements or shafts in gearboxes.

Methods for mounting or installing gearing elements by using tools, e.g. guide members, jigs or the like.

F16H 2057/0235

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

F16H 57/029

Definition statement

This place covers:

Gearboxes characterised by means for preventing escape of liquids (e.g. lubrication oil) or gases.

Gearboxes characterised by means for preventing ingress of liquids, gases, dust or the like.

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Lubrication storage reservoirs with sealings between	F16H 57/0454
different partitions of gearing or to a reservoir	
Sealings	F16J 15/00

F16H 57/033

Definition statement

This place covers:

A group of similar gearboxes based on the same design, e.g. being available in different sizes.

A group of gearboxes which comprises a combination of several standardised units and which can meet various requirements by altering the combination of such units.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

F16H 57/035

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings for conveying rotary motion by endless flexible	F16H 7/00, F16H 9/00
members	

F16H 57/037

Definition statement

This place covers:

Housing components of gearboxes for accommodating differential gearings, which housing components are usually not intended to revolve with the differential gearings, e.g. housing (1) in the illustration below.

PROJECT RP10485

Illustrative example of subject matter classified in this place:

References

Limiting references

This place does not cover:

Rotating cases for differential gearings	F16H 48/40

Informative references

Differential gearings	F16H 48/00

DATE: MAY 1, 2025

PROJECT RP10485

F16H 57/038

References

Limiting references

This place does not cover:

('corboyce for ecommodating	dittoroptiol dooripdo	
Gealboxes toraccommodating a		
	0 0	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings comprising conical gears	F16H 1/14
Toothed gearings having helical, herring-bone or like teeth	F16H 1/18

F16H 57/039

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings comprising worm and worm-wheel	F16H 1/16

F16H 57/0405

References

Informative references

Investigating or analysing lubricating oil characteristics,	G01N 33/2888
e.g. deterioration, by specific methods	
Investigating or analysing lubricating properties of oils by	G01N 33/30
specific methods	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 57/0423

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Means for guiding lubricant into an axial channel of a shaft	F16H 57/0426
Lubrication by injection; Injection nozzles or tubes therefor	F16H 57/0456

F16H 57/0424

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Means for guiding lubricant into an axial channel of a shaft	F16H 57/0426
--	--------------

F16H 57/0432

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Lubrication, cooling, or heating of shift rods or shift forks	F16H 57/0468
---	--------------

F16H 57/0446

References

Informative references

Generation or control of line pressure characterised by	F16H 2061/0037
controlled fluid supply to lubrication circuits of the gearing	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 57/0449

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

F16H 57/0458

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearboxes characterised by means for venting gearboxes,	F16H 57/027
e.g. air breathers	

F16H 2057/085

Definition statement

This place covers:

Bearings of orbital gears, i.e. sliding and/or rolling contact bearings supporting orbital gears on the carrier.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

1a.

Figure 1a illustrates a planet carrier (2) and planet gear (6), including a needle bearing (5) as a rolling contact bearing, and left and right thrust washers (8) as sliding contact bearings which support the planet gear (6) on a planet pin (4) of the planet carrier (2).

DATE: MAY 1, 2025

PROJECT RP10485

F16H 57/12

References

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Gears specially adapted for positioning of programme-controlled	B25J 9/103
manipulators with backlash-preventing means	

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gears having orbital motion with arrangements for	F16H 1/2863
adjusting or taking-up backlash	
Screw mechanisms with arrangements for taking up	F16H 25/2003
backlash	
Screw mechanisms with balls with arrangements for taking	F16H 25/2209
up backlash	
Toothed wheels with special devices for taking up backlash	F16H 55/18
Worms or worm gears with special devices for taking up	F16H 55/24
backlash	
Racks with special devices for taking up backlash	F16H 55/28
Support of worm gear shafts in gearboxes	F16H 2057/0213
Adjustment of transmission shafts or bearings in gearboxes	F16H 57/022

F16H 59/02

References

Informative references

Control devices or systems insofar as characterised by	G05G
mechanical features only	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 59/0217

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Ratio selector apparatus consisting of electrical switches or	F16H 59/044
sensors	
Range selector apparatus comprising levers and consisting	F16H 59/105
of electrical switches or sensors	

F16H 59/041

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Final output mechanisms and actuating means for the final	F16H 63/02
output mechanisms	

F16H 59/042

References

Informative references

Final output mechanisms and actuating means for the final	F16H 63/02
output mechanisms	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 59/044

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Range selector apparatus comprising levers and consisting	F16H 59/105
of electrical switches or sensors	

F16H 2059/047

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Up- and down-shift or range or mode selection by repeated	F16H 2059/0239
movement	

F16H 2059/048

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Constructional features of selector lever handles with lock	F16H 2059/0282
mechanisms	

F16H 59/14

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Inputs being a function of pump torque in hydrostatic transmissions	F16H 2059/6884
Inputs being a function of motor torque in hydrostatic	F16H 2059/6892
transmissions	

F16H 2059/186

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Idle pos	ition	F16H 59/22

F16H 59/22

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

|--|

F16H 59/36

References

Informative references

Inputs being a function of pump speed in hydrostatic	F16H 2059/6869
transmissions	
Inputs being a function of motor speed in hydrostatic	F16H 2059/6876
transmissions	
DATE: MAY 1, 2025

PROJECT RP10485

F16H 2059/443

Definition statement

This place covers:

Input being a function of the detected vehicle travel direction, and the detected travel direction is based on vehicle speed.

F16H 59/48

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Inputs being a function of rate of change of input shaft	F16H 2059/363
Inputs being a function of rate of change of gearing output	F16H 2059/405
shaft speed or vehicle speed	1 1011 2000/400
Inputs being a function of rate of change of gearing input or	F16H 2059/425
turbine shaft speed	

F16H 2059/683

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Input as a function of sensed pressures in hydrostatic	F16H 2059/6861
transmissions	

F16H 2059/743

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Input as a function of transmission input torque F16H 2059/147
--

F16H 61/0025

Definition statement

This place covers:

Supply of control fluid, e.g. fluid pumps or accumulators for generating line pressure.

F16H 61/0031

Definition statement

This place covers:

Auxiliary pumps provided in addition to a main pump for supplying hydraulic fluid to the transmission control circuit, e.g. an auxiliary pump supplying hydraulic fluid when the engine has stopped.

F16H 61/0202

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

F16H 61/0206

References

Informative references

Generation or transmission of movements for final	F16H 61/2807
actuating mechanisms with at least one movement of the	
final actuating mechanism being caused by a non-	

DATE: MAY 1, 2025

PROJECT RP10485

mechanical force using electric control signals for shift	
actuators	

F16H 61/0248

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Generation or transmission of movements for final	F16H 61/28
actuating mechanisms with at least one movement of the	
final actuating mechanism being caused by a non-	
mechanical force	

F16H 61/0262

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Smoothing ratio shift	F16H 61/04

F16H 61/0267

References

Informative references

Generation or transmission of movements for final	F16H 61/30
actuating mechanisms with at least one movement of the	
final actuating mechanism being caused by hydraulic or	
pneumatic motors or related fluid control means	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 61/0274

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Generation or transmission of movements for final	F16H 61/28
actuating mechanisms with at least one movement of the	
final actuating mechanism being caused by a non-	
mechanical force	

F16H 2061/0474

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Smoothing ratio shift by preventing or solving a tooth butt	F16H 2061/047
situation upon engagement failure due to misalignment of	
teeth	

F16H 2061/1252

References

Informative references

Bringing the control into a predefined state using fail	F16H 2061/1236
priority valves	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 2061/146

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Smoothing ratio shift	F16H 61/04

F16H 61/21

Definition statement

This place covers:

Reducing the engine speed by controlling the transmission.

F16H 61/2807

References

Limiting references

This place does not cover:

Hydraulic or pneumatic motors or related fluid control	F16H 61/30
means for generation or transmission of movements for	
final actuating mechanisms	
Electric motors or actuators or related electrical control	F16H 61/32
means for generation or transmission of movements for	
final actuating mechanisms	

Informative references

Gearshift control characterised by the method for	F16H 61/0213
generating electric shift signals	

DATE: MAY 1, 2025

PROJECT RP10485

F16H 61/38

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control of combinations of mechanical gearing with fluid	F16H 47/00
clutches or fluid gearing	

F16H 2063/005

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Generation or transmission of movements for final	F16H 2061/308
actuating mechanisms with at least one movement of the	
final actuating mechanism being caused by modular	
hydraulic shift units	

F16H 63/04

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Constructional features of the final output mechanisms	F16H 63/30
--	------------

F16H 63/08

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Constructional features of the final output mechanisms	F16H 63/30

F16H 63/24

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

Constructional features of the final output mechanisms	F16H 63/30
--	------------

F16H 63/28

References

Informative references

Attention is drawn to the following places, which may be of interest for search:

F16H 63/3069

References

Informative references

Constructional features of interlocking devices	F16H 63/36
---	------------

PROJECT RP10485

2. A. DEFINITIONS (modified)

F16H

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearings for conveying rotary motion:

- Toothed gearings;
- Friction gearings, e.g. gearings using endless flexible members;
- Fluid gearings;
- Change speed or reversing gearings;
- Differential gearings;
- Using intermittently-driving members;
- Gearings not limited to rotary motion;
- Mechanical gearings using levers, links or cams; or
- Using intermittently-driving members.

Combination of gearings.

General details of gearings.

Control of gearings.

Relationships with other classification places

<u>Replace</u>: The existing Relationships text with the following updated text.

Subclass F16H for gearings is a function-oriented place. Gearings or transmissions comprising general applicable inventions or intended for different applications are classified in this subclass. Specially adapted gearings for a particular purpose are classified in the related subclass for the application. Some examples where these gearings will be classified when specially adapted or for a particular purpose could be found in the following list of references.

References

<u>Replace</u>: The existing Application-oriented references table with the following updated table.

	Gearings in harvesters or mowers	A01D69/06
--	----------------------------------	-----------

DATE: MAY 1, 2025

PROJECT RP10485

Gearings in balers	A01F15/0841
Gearings in surgical tools	A61B
Gearings for toys	A63H31/00
Toothed-wheel gearing for metal-rolling mills	B21B35/12
Varying the speed ratio of driving or feeding mechanisms of	B23Q5/12,
machine tools	B23Q5/46
Gearings for portable rotary tools	B25F5/001
Gearings for manipulators	B25J9/102
Gearings in torque-transmitting axles	B60B35/121
Conjoint control of drive units for vehicles	B60W
Transmissions for railway locomotives	B61C9/00
Vehicle steering gears	B62D3/00
Cycle transmissions	B62M
Marine propulsion	B63H
Transmissions for marine propulsion	B63H23/00
Marine steering gears	B63H25/00
Gearings for control surfaces in airplane and helicopters	B64C13/24,
	B64C27/12,
	B64C27/58
Gearings for aircraft propellers or rotors	B64D35/00
Gearings in dredging or soil shifting machines	E02F
Gearings in gas turbine plants	F02C7/32,
	F02C7/36
Transmission of mechanical power for wind motors	F03D15/00
Gearings associated with fluid-actuated devices	F15B15/00
Gearing used in indicating or recording apparatus in	G01D5/04
connection with measuring devices	
Driving arrangements for tuning resonant circuits	H03J1/00
Driving mechanisms for apparatus for transmission of	H04L13/04
coded digital information	

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Arrangement of transmissions in vehicles	B60K17/00
Fluid actuators	F15B
Couplings for transmitting rotation; Clutches	F16D

DATE: MAY 1, 2025

PROJECT RP10485

Special rules of classification

<u>Replace</u>: The existing Special rules text with the following updated text.

The use of the available Indexing Codes in this subclass is mandatory and should be assigned for additional information to facilitate searching. The Indexing Codes under F16H 2700/00 are no longer used for classifying new documents.

Glossary of terms

<u>Replace</u>: The existing Glossary of terms table with the following updated table.

gearing	mechanical, hydraulic, electric or other means for transmitting mechanical motion or force
gearbox	housing of the gearing
toothed gearing	includes worm gearing and other gearing involving at least one wheel or sector provided with teeth or the equivalent, except gearing with chains or toothed belts, which is treated as friction gearing
conveying motion	includes transmitting energy, and means that the applied and resultant motions are of the same kind, though they may differ in, e.g. speed, direction or extent
rotary motion	implies that the motion may continue indefinitely
oscillating motion	moving about an axis to an extent which is limited by the construction of the gearing and which may exceed one revolution, the movement being alternately forwards and backwards during continued operation of the gearing
reciprocating motion	moving substantially in a straight line, the movement being alternately forwards and backwards during continued operation of the gearing
reversing or reversal	applied movement in one direction may produce a resultant movement in either of two opposed directions at will. Note: When reversing reciprocating motion, input rotary motion (which is defined as indefinitely continuous rotary motion) would cause an automatic reversal of the reciprocating motion. If the input rotational direction is changed in order to cause reversal of the reciprocating motion, the input motion is an oscillating motion (which is defined as alternately forward and backward rotary motion)

DATE: MAY 1, 2025

PROJECT RP10485

central gears	includes any gears whose axis is the main axis of the gearing, e.g. sun or ring gear
Ravigneaux set	a planetary gear set with at least three central gears, and conveying rotary motion between axially-spaced orbital gears. It comprises a long orbital gear consisting of two axially spaced orbital gears which are fixedly connected to each other. It comprises a further orbital gear which meshes with one of the orbital gears of the long orbital gear to form a pair of intermeshing orbital gears. All orbital gears are mounted on a common planet carrier and are considered as a single set of orbital gears.
creeping	the vehicle has come to a stop, the engine is at idle (i.e., there is no request by the operator for a higher engine speed/torque), but due to the rotation of various transmission components, the vehicle starts to move, and the vehicle operator has some control over movement with a brake
inching	the vehicle operator has some control, besides using a brake, over moving the vehicle by small degrees

F16H 1/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearing with fixed gear ratio using only gears with teeth.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Combinations of mechanical gearings	F16H37/00
Gears associated with electric machines	H02K7/116

DATE: MAY 1, 2025

PROJECT RP10485

F16H1/006

Definition statement

Insert: The following new Definition statement and images.

This place covers:

Illustrative examples of subject matter classified in this place:

1a.

PROJECT RP10485

Figures 1a and 1b illustrate a worm drive shaft (a) and driven shaft (d) which may assume variable positions to one another, i.e. worm drive shaft (a) may pivot around driven shaft (d).

2.

DATE: MAY 1, 2025

PROJECT RP10485

Figure 2 illustrates a drive shaft (left outermost gear) and a driven shaft (right outermost gear) may assume variable positions to one another, i.e. gear train (252B) may pivot with respect to gear train (252A).

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Angle drives for machine tools	B23Q5/045
Yielding couplings, i.e. with means permitting movement	F16D3/00
between the connected parts during the drive, e.g. universal	
joints	

F16H 1/14

Definition statement

Insert: The following new Definition statement and images.

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, comprising conical gears only.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a bevel gearing involving only two intermeshing members, i.e. bevel gears (2) and (4). The axes thereof are non-parallel.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Turntables, i.e. structure rotatable about 360°, e.g. slew	B23Q5/045
drives	

DATE: MAY 1, 2025

PROJECT RP10485

F16H1/16

Definition statement

Insert: The following new Definition statement and images.

Toothed gearings for conveying rotary motion, with fixed gear ratio, without gears having orbital motion, involving only two intermeshing members, with non-parallel axes, comprising worm and worm-wheel.

Illustrative example of subject matter classified in this place:

The Figure illustrates a worm gearing involving only two intermeshing members, i.e. worm (2) and worm-wheel (5).

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Special devices for taking up backlash for worms and	F16H55/24
worm gears	
Support of worm gear shafts	F16H2057/0213

DATE: MAY 1, 2025

PROJECT RP10485

Worm gears associated with electric machines	H02K7/1166
--	------------

F16H1/32

Insert: The following new Definition statement.

Definition statement

This place covers:

Toothed gearings for conveying rotary motion, with fixed gear ratio, with gears having orbital motion, in which the central axis of the gearing lies inside the periphery of an orbital gear, e.g. eccentric gearing or cycloidal gearing.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Gearings comprising cams for conveying rotary motion,	F16H25/06
with intermediate members guided along tracks on both	
rotary members	
Wave gearings	F16H49/001
Cycloidal or planetary mechanisms for adjustable back-	B60N2/2252
rest in which the central axis of the gearing lies inside the	
periphery of an orbital gear, e.g. one gear without sun	
gear	

F16H3/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearings with variable gear ratio or reversing motion using only gears with teeth.

References

Insert: The following new Limiting references section.

DATE: MAY 1, 2025

PROJECT RP10485

Limiting references

This place does not cover:

Speed-changing or reversing mechanisms	F16H59/00 -
	F16H63/00

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of mechanical gearings	F16H37/00
-------------------------------------	-----------

F16H3/426

Insert: The following new Definition statement and image.

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a transmission without gears having orbital motion and providing a continuously variable gear ratio. The teeth of gear 1 are arranged on a flat disc-type surface.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

For conveying rotary motion by means of cranks, eccentrics	F16H21/14
or like members fixed to one rotary member and guided along	
tracks on the other	

DATE: MAY 1, 2025

PROJECT RP10485

F16H7/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Belts drives, chain drives or rope drives with a fixed ratio, and tensioning mechanisms and guiding means used in such systems. Also including ways or tools to mount the belt, chain or rope on the pulley or sprocket.

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

Gearings for conveying rotary motion with variable gear ratio,	F16H9/00
or for reversing rotary motion, by endless flexible members	

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Chain-wheels per se	F16H55/30
Pulleys per se	F16H55/36
Endless flexible members per se, e.g. belts, V-belts, ropes, cables or chains	F16G

F16H9/12

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Transmissions where a belt is axially squeezed between two sheaves of at least one pulley.

DATE: MAY 1, 2025

PROJECT RP10485

F16H13/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearing where rotary motion is transferred with a fixed ratio by the friction of the surfaces of members in the gearing, where the surfaces are pressed to each other.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members	F16H15/00
Friction members, e.g. discs	F16H55/32

F16H15/00

References

Limiting references

<u>Delete</u>: The following row from the existing Limiting references table.

Friction gearings for conveying rotary motion with fixed gear ratio F16H13/00

Informative references

Insert: The following two new rows to the existing Informative references table.

Toothed gearings for reversal only	F16H3/14, F16H3/60
Friction gearings for conveying rotary motion with fixed gear ratio	F16H13/00

DATE: MAY 1, 2025

PROJECT RP10485

F16H19/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearings for converting limited rotary movement, e.g. oscillation, into another rotary movement or a limited rotary movement into reciprocating movement or vice versa, e.g. by using flexible friction means, or rack and pinion mechanisms.

Gearings for converting reciprocating movement into another reciprocating movement, e.g. by flexible means.

F16H19/005

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

The Figure illustrates a friction gearing comprising rollers (8) and (9) attached to belts (10) and (11). The belts (10) and (11) allow the gearing to convey limited rotary motion, i.e. oscillating motion.

DATE: MAY 1, 2025

PROJECT RP10485

F16H19/006

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

The Figure illustrates a friction gearing comprising input belt (6), output belt (3) and pulley (12). The gearing converts the reciprocating input motion of belt (6) into a reciprocating output motion of belt (3).

DATE: MAY 1, 2025

PROJECT RP10485

F16H19/025

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

The Figure illustrates a transmission comprising gears (11) and shaft (22), which frictionally engage. Rotation of shaft (22) results in an axial movement of the carrier (24).

Insert: The following new Relationships section.

Relationships with other classification places

Gearings comprising screw mechanisms for conveying or interconverting oscillating or reciprocating motions are covered by F16H25/20. This classification place covers similar gearings with the difference that a frictionally engaging shaft is used instead of a threaded shaft.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Screw mechanisms	F16H25/20
Screw mechanisms with rollers	F16H25/2247

F16H19/0604

Definition statement

<u>Replace</u>: The existing entire Definition statement with the following updated statement, images and captions.

Mechanisms including flexible members, where the output movement is half or double compared with the movement of the input.

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a transmission including rotary motor (1) and output (6). Motor (1) drives frame (3) along a linear track (5). The frame is coupled to output (6) via belts (7), (7'). Movement of frame (3) along a distance (1/2) creates movement of output (6) along a distance (I).

PROJECT RP10485

Figure 2 illustrates a transmission including piston (2) and output (11). Piston (2) provides input to belt (9) by movement back and forth in cylinder (3). Belt (9) engages rollers (10) and is connected to output (11), such that movement of the piston (2) is doubled at output (11).

F16H2019/0609

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement and leave the current image as is.

Mechanisms including flexible members, where the differential effect by using at least one drum or pulley with different diameters is creating the reciprocating movement.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

Insert: The new caption under the existing image.

The Figure illustrates a transmission including rotary input (11) and reciprocating output (17b). Rotation of the belt (15) around pulleys (16a) and (16b) of different diameter create the reciprocating output movement of output (17b).

F16H2019/0613

Definition statement

<u>Replace</u>: The existing entire Definition statement with the following updated statement, images and captions.

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a transmission including input pinion (14) and output toothed rack (10). Pinion (14) drives toothed belt (11) which engages with toothed rack (10).

PROJECT RP10485

Figure 2 illustrates a transmission including rotary input (24) and output toothed rack (60). Input (24) drives belt (40) which engages toothed rack (60).

F16H19/0618

Definition statement

<u>Replace</u>: The existing entire Definition statement with the following updated statement, image and caption.

Mechanisms where the on-winding and off-winding on a drum or thread create axial movement parallel to the drum or thread.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a transmission including rotary input (11) and reciprocating output (13). Winding and unwinding of thread (29) converts the rotary motion of input (11) to axial movement of output (13).

F16H19/0622

Definition statement

<u>Replace</u>: The text "Example" in the Definition statement with the following updated text. Leave existing first paragraph beginning "Mechanisms where..." as is.

Illustrative example of subject matter classified in this place:

Insert: The new caption under the existing image.

The Figure illustrates a transmission including an input stepped motor (7) and an output carriage (2). Motor (7) drives pulley (6) which engages with belt (5). Movement of belt (5) causes axial movement of carriage (2). The axial movement of carriage (2) is perpendicular to the axis of the stepped motor (7).

DATE: MAY 1, 2025

PROJECT RP10485

F16H19/0628

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Mechanisms where oscillating movement is converted by on-winding and offwinding of a flexible member on a drum into reciprocating movement perpendicular to the axis of oscillation.

Illustrative example of subject matter classified in this place:

Figure 1 illustrates a transmission including oscillating input (12) and reciprocating output (22). Input (12) causes winding and unwinding of belt (20) at different ends, which causes reciprocating movement of output (22) perpendicular to the input motion.

PROJECT RP10485

Figure 2 illustrates a transmission including oscillating input (26) and reciprocating output (14). Input (26) causes winding and unwinding of belt (16) at different ends, which causes reciprocating movement of output (14) perpendicular to the input motion.

PROJECT RP10485

Figure 3 illustrates a transmission including oscillating input (11) and reciprocating output (71). Input (11) causes winding and unwinding of belts (51) and (61) at different ends, which causes reciprocating movement of output (71) perpendicular to the input motion.

F16H19/0636

Definition statement

<u>Replace</u>: The entire Definition statement section with the following updates.

Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion, whereby the gearings are for interconverting rotary (or oscillating) motion and reciprocating motion and comprise a flexible member, the flexible member being a non-buckling chain.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1.

Figure 1 illustrates a transmission including two belts (1, 1') and rotary pinions (15, 15', 17), and (17') engaging the belts. Buckling of the belts (1, 1') is prevented by interlocking teeth (2, 2').

PROJECT RP10485

2.

Figure 2 illustrates a transmission including belt (110) and rotary pinions (240) engaging the belt. Buckling of the belt (110) is prevented by interlocking teeth (112).

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Devices, e.g. jacks, adapted for uninterrupted lifting of loads with racks actuated by pinions and comprising pivotable toothed	B66F3/06
sections or segments, e.g. arranged in pairs	
Chains having special overall characteristics: stiff; Push-pull	F16G13/20
chains	

Insert: The following new Synonyms and Keywords section.

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

• "zip chain" and "interlocking chain"

F16H19/064

Definition statement

<u>Replace</u>: The entire Definition statement with the following updated statement.

Toothed or friction gearing not capable of conveying indefinitely-continuing rotary motion for converting rotary or oscillating motion and reciprocating motion, comprising a flexible push member which includes a stiffness capable of creating a pushing force.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

Figure 1 illustrates a transmission including flexible member (3) and rotary output (5). A pushing force on member (3) causes rotation of member (5).
PROJECT RP10485

2a.

PROJECT RP10485

Figures 2a and 2b illustrate a gearing including rotary input pinion (308) and output (404). Rotation of pinion (308) causes flexible member (401) to wind around drum (403), causing the drum (403) and output (404) to move linearly. Flexible member (401) includes a stiffness capable of creating a pushing force in section (406).

F16H19/0645

Definition statement

<u>Replace</u>: The entire Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a gearing including input worm (10) engaging with flexible rack cable (6). Sheath (7) acts as guiding means for the cable (6).

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

The flexible member being a non-buckling chain F16H19/0636
--

DATE: MAY 1, 2025

PROJECT RP10485

F16H19/065

Definition statement

<u>Replace</u>: The entire Definition statement with the following updated statement.

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a gearing where rotation of the top disc causes flexible members to move bottom disc axially.

2.

Figure 2 illustrates a gearing including discs (32) and (38) and flexible members (36). Rotation of disc (32) creates reciprocating movement of disc (38).

PROJECT RP10485

4.

Figure 4 illustrates a gearing including discs (20) and (22) and flexible members (24). Rotation of disc (20) creates reciprocating movement of disc (22).

DATE: MAY 1, 2025

PROJECT RP10485

F16H19/0654

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing including rotational input (11) and reciprocating output (13). Twisting movement of flexible member (12) causes the reciprocating movement of output (13), which modifies the axial length of the gearing as a whole.

F16H19/0663

Definition statement

<u>Replace</u>: The entire Definition statement section with the following updates.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a gearing including input from motor (84) and telescoping pipes (81, 82 and 83). Motor (84) causes rotation of screw (85), which causes

DATE: MAY 1, 2025

PROJECT RP10485

rotation of pulley (86). Rotation of pulley (86) causes axial displacement of pipes (81, 82 and 83) via a chain.

F16H19/0672

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing including rotary input (12) and reciprocating output (20). A spring is included for tensioning the flexible member (16).

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Means for varying tension of belts, ropes or chains for gearings	F16H7/08
conveying rotary motion	

F16H2019/069

Definition statement

<u>Replace</u>: The entire Definition statement section with the following updates.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

1a.

PROJECT RP10485

1b.

1c.

Figures 1a, 1b and 1c illustrate a gearing including rotary inputs (64 and 74), block (30) slidable in both the vertical (Z) and horizontal (R) directions, flexible member (56) and moveable output (18). Actuation of the gearing allows output (18) to be moved to a specific location on the (R-Z) plane.

DATE: MAY 1, 2025

PROJECT RP10485

F16H2019/0695

Definition statement

<u>Replace</u>: The existing Definition statement text with the following updated text. The image should remain as-is.

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing including rotary input from motor (61) and output (51). Actuation of the gearing generates a pivoting movement at (50) for output (51).

DATE: MAY 1, 2025

PROJECT RP10485

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Positioning means for manipulators with cables, chains or	B25J9/104
ribbons	

F16H21/00

<u>Delete</u>: The entire Definition statement.

References

Insert: The following new Limiting references section.

Limiting references

This place does not cover:

	Wobble-plate gearings;	Oblique-crank gearings	F16H23/00
--	------------------------	------------------------	-----------

<u>Delete</u>: The entire Application-oriented references section.

Informative references

Replace: The existing Informative references table with the following updated table.

Combinations of gearings of different types	F16H37/00
Portable or mobile lifting or hauling appliances	B66D3/00
Crankshafts or eccentric shafts per se	F16C3/04
Adjustable cranks or eccentric shafts per se	F16C3/28
Adjustable connecting rods per se	F16C7/06

DATE: MAY 1, 2025

PROJECT RP10485

F16H21/04

Insert: The following new Definition statement.

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:

The Figure illustrates a gearing including input (4), links (7) and (8), and output (6). Links (7) and (8) guide element (6).

DATE: MAY 1, 2025

PROJECT RP10485

F16H21/14

Definition statement

<u>Replace</u>: The existing Definition statement text and image with the following updated text and images.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a gearing comprising input member (185) and output member (187). Crank pin (104) is fixed on rotary member (185) and guided in a first long hole of member (202), crank pin (106) is fixed on rotary member (187) and guided in a second long hole of member (202). Counter-clockwise rotation of rotary input member (185) is conveyed to clockwise rotation of rotary output member (187) via reciprocating motion of member (202).

References

Insert: The following new Informative references section.

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with constant gear	F16H2001/327
ratio, with gears having orbital motion in which the central axis of	
the gearing lies inside the periphery of an orbital gear, with the	
orbital gear having internal gear teeth	

F16H21/20

Insert: The following new Definition statement.

Definition statement

This place covers:

Gearings comprising primarily only links or levers, with or without slides, crank gearings or eccentric gearings, for interconverting rotary motion and reciprocating motion, all movement being in, or parallel to, a single plane, with adjustment of throw.

Illustrative examples of subject matter classified in this place:

1.

PROJECT RP10485

Figure 1 illustrates a crank gearing comprising primarily only links and levers for converting rotary motion of the crank shaft (1) into reciprocating motion of the piston (13) which functions as a guided slide. Crankshaft (1) comprises an oblique crank pin (9). The throw, i.e. the length of the reciprocating motion of piston (13), is adjusted by moving crankshaft (1) in a different axial position. The axial movement of crankshaft (1) between a minimum and maximum throw is shown by arrow (7).

PROJECT RP10485

Figure 2 illustrates a crank gearing comprising primarily only links and levers for converting rotary motion of the crank shaft (18) into reciprocating motion of the piston (13) which functions as a guide slide. The throw, i.e. the length of the reciprocating motion of piston (13), is adjusted by moving pivot (12) to a different position.

References

2.

Insert: The following new Application-oriented references section.

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Engines with variable distances between pistons at top	F02B75/048
dead-centre positions and cylinder heads by means of a	
variable crank stroke length	

DATE: MAY 1, 2025

PROJECT RP10485

<u>Replace</u>: The existing Informative references table with the following updated table.

Informative references

Gearings comprising primarily only cams, cam followers and screw-and-nut mechanisms for interconverting rotary motion and reciprocating motion, with adjustable throw	F16H25/10
Adjustable cranks or eccentrics	F16C3/28
Adjustable connecting-rods	F16C7/06

F16H23/00

References

<u>Delete</u>: The entire Limiting references section.

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings with toothed wobble members for conveying rotary motion, e.g. reduction gears with high ratio	F16H1/321
Combinations of gearings of different types	F16H37/00

F16H25/00

Definition statement

<u>Replace</u>: The existing Definition statement text with the following updated text.

- Gearings using primarily only cams or cam-followers to convey rotary motion;
- Other gearings comprising primarily only cams or cam-followers for interconverting oscillating and reciprocating motions;
- Screw-and-nut-mechanisms.

DATE: MAY 1, 2025

PROJECT RP10485

References

<u>Delete</u>: The entire Limiting references section.

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Crank gearings or eccentric gearings comprising primarily only links or levers	F16H21/18
Wobble plate gearings or oblique-crank gearings	F16H23/00
Combinations of mechanical gearings of different types	F16H37/00
Adjustable single-track cams per se for single-revolution	F16H53/04
cycles; Camshafts with such cams per se	
Cam followers per se	F16H53/06
Rope or like tackle for lifting or haulage	B66D3/00
Adjustable connecting rods per se	F16C7/06
Clutch actuation by cams, ramps or ball-screw-mechanisms	F16D2023/123

F16H25/10

Insert: The following new Definition statement.

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers for interconverting rotary motion and reciprocating motion, with adjustable throw.

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

Figures 1a, 1b and 1c illustrate a gearing comprising only a cam (38) and a cam follower (42). Rotary motion of cam (38) is converted into reciprocating motion of

DATE: MAY 1, 2025

PROJECT RP10485

cam follower (42). The throw, i.e. the length of the reciprocating motion, is adjusted by axially moving axially tapered cam (38).

References

Insert: The following new Application-oriented references section.

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Modifications of valve-gear for optimising engine performancesF01L13/0015by modifying valve lift according to various working parametersF01L13/0015

Informative references

Insert: The following <u>new row</u> reference in the Informative references table.

Crank gearings or eccentric gearings comprising primarily only links or	F16H21/20
levers, for interconverting rotary motion and reciprocating motion in or	
parallel to a single plane, with adjustment of throw	

F16H25/12

Insert: The following new Definition statement.

Definition statement

This place covers:

Gearings comprising primarily only cams and cam followers for interconverting rotary motion and reciprocating motion, with reciprocation occurring in a direction along the axis of rotation. It is noted that "reciprocation along the axis of rotation" can be reciprocating movement either on or parallel to the axis of rotation.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

Figure 1a illustrates a gearing comprising only a cam shaft (4) and a cam follower (12). Rotary motion of the input shaft (see arrow 8) is converted into reciprocating motion of output shaft (14) (see arrow F, s). The reciprocation is along and coaxial to the axis of rotation (10). The gearing comprises wave-type profiles (22) and (24) for the cam.

PROJECT RP10485

1b.

PROJECT RP10485

2.

Figure 2 illustrates a gearing comprising only a cam (14) and a cam follower (9). Rotary motion of shaft (17) is converted into reciprocating motion of sledge (6) (see arrow 7). The reciprocation is along and parallel to the axis of rotation. The gearing includes helical projection (14).

References

Insert: The following <u>new row</u> reference into the existing Informative references table.

Informative references

Gearings comprising primarily only cams, cam-followers and	F16H25/18
screw-and-nut mechanisms for conveying or interconverting	
oscillating or reciprocating motions	

DATE: MAY 1, 2025

PROJECT RP10485

F16H25/20

Insert: The following new Definition statement.

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

Figure 1 illustrates a gearing comprising primarily only a screw-and-nut mechanism. Rotation of screw (6) results in linear movement of nut (8).

PROJECT RP10485

2.

Figure 2 illustrates a gearing comprising primarily only a screw-and-nut mechanism. Rotation of nut (23) results in linear movement of screw (40). It is noted that the gearing comprises a simple set of toothed gears (20). However, the primary functioning of the gearing consists of the screw and nut, and the presence of a simple set of gears is not sufficient to consider the gearing more than primarily a screw-and-nut mechanism.

DATE: MAY 1, 2025

PROJECT RP10485

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

Gearings comprising primarily only cams and cam followers for	F16H25/12
interconverting rotary motion and reciprocating motion with	
reciprocation along the axis of rotation	

Insert: The following new Informative references table.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings comprising friction members and not capable of conveying indefinitely-continuing rotary motion comprising a friction shaft	F16H19/025
Screw-operated jacks	B66F3/08
Handling mechanical energy associated with electric machines	H02K7/06
including means for converting reciprocating motion into rotary	
motion or vice-versa	

F16H2025/2059

Insert: The following new Definition statement section.

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

DATE: MAY 1, 2025

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a gearing comprising primarily only a screw-and-nut mechanism having screws (22) and (32) engaging nuts (24) and (34), respectively. Nuts (24) and (34) are connected to each other and have opposite thread directions. Common rotation of nuts (24) and (34) results in opposite linear movement of screws (22) and (32).

PROJECT RP10485

Figure 2 illustrates a gearing comprising primarily only a screw-and-nut mechanism having screws (31) and (32) engaging nuts (41) and (42) respectively. Screws (31) and (32) are connected to each other and have opposite thread directions. Common rotation of screws (31) and (32) results in opposite linear movement of nuts (41) and (42).

F16H25/24

<u>Delete</u>: The entire Definition statement.

References

Insert: The following new Limiting references table.

Limiting references

This place does not cover:

Screw mechanisms with balls, rollers or similar members between the	F16H25/22
co-operating parts; Elements essential to the use of such members	

<u>Delete</u>: The entire Special rules section.

DATE: MAY 1, 2025

PROJECT RP10485

F16H2025/249

References

Informative references

<u>Replace</u>: The existing Informative references text with the following updated text.

Features relating to lubrication or cooling or heating of screw	F16H57/0497
mechanisms	

F16H27/00

<u>Replace</u>: The existing Definition statement text with the following updated text.

Definition statement

Mechanisms which include movement in a stepwise, or step-by-step, manner such that an output member is alternately moving and at rest during continuous motion of an input member.

Insert: The following new Synonyms and Keywords section.

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

• "step-by-step", "stepwise" and "indexing"

F16H29/00

Definition statement

<u>Replace</u>: The existing Definition statement text with the following updated text.

Gearings for conveying continuous rotary motion into a rotary output motion by using intermittently-driving members, e.g. with freewheel action:

DATE: MAY 1, 2025

PROJECT RP10485

- with stationary intermittently-driving members, i.e. not rotating with either of the shafts;
- with rotating intermittently-driving members.

References

<u>Delete</u>: The entire Limiting references section.

Informative references

Insert: The following <u>new reference row</u> in the Informative references table.

Other gearings with freewheeling members or other intermittently	F16H31/00
driving members	

F16H31/00

Definition statement

<u>Replace</u>: The existing Definition statement text with the following updated text.

Gearings with freewheeling members or other intermittently-driving members for converting oscillating, i.e. non-continuous rotary input, or reciprocating movement into another movement, e.g. a step-by-step mechanism including a freewheel member.

F16H33/00

<u>Delete</u>: The entire Definition statement.

References

<u>Delete</u>: The entire Limiting references section.

Application-oriented references

<u>Replace</u>: The existing Application-oriented references text with the following updated text.

DATE: MAY 1, 2025

PROJECT RP10485

Apparatus for generating mechanical vibrations involving rotary	B06B1/16
unbalanced masses	

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gravity or inertia motors	F03G3/00

F16H2035/003

Insert: The following new Definition statement section.

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a toothed gearing including two non-circular gears (13) and (14).

PROJECT RP10485

2.

Figure 2 illustrates a toothed gearing including non-circular gear (3).

DATE: MAY 1, 2025

PROJECT RP10485

3.

Figure 3 illustrates a belt-and-pulley transmission including two non-circular pulleys.

References

Informative references

Replace: The existing Informative references text with the following updated table.

Gearings or mechanisms for conveying rotary motion with	F16H35/02
cyclically varying velocity ratio	
Harmonic drives with elliptical wave generators	F16H49/001

F16H2035/005

Insert: The new Definition statement section.

Definition statement

This place covers:

Illustrative example of subject matter classified in this place:
PROJECT RP10485

The Figure illustrates a gearing with a no-back mechanism consisting of an axially movable friction member (10). Friction member (10) and helical gear (13) are fixed to shaft (9). Only when torque is applied from output shaft (24), i.e. backdriving of the gearing, shaft (9) is axially moved by the axial force of helical gear (13) towards brake area (11), thereby pressing friction member (10) against brake area (11) of housing wall (4). This causes braking of shaft (9) and prevents backdriving of output shaft (24).

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Unidirectionally torque-transmitting toothed gearing for conveying	F16H1/003
rotary motion	
Brakes and rotational locks of screw mechanisms	F16H25/2454
Freewheels or freewheel clutches	F16D41/00

DATE: MAY 1, 2025

PROJECT RP10485

F16D59/00

Insert: The following new Synonyms and Keywords section.

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

• "Brakes" or "mechanisms for preventing backdriving" and "no-back devices"

F16H2035/006

Insert: The new Definition statement.

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

1.

Figure 1 illustrates a worm gearing consisting of a worm (11) and a worm wheel (15). The worm wheel (15) includes end stops (21) with noses (22), which stop movement after a few turns of worm (11).

PROJECT RP10485

2a.

PROJECT RP10485

2c.

Figures 2a, 2b and 2c illustrate a toothed gearing including three spur gears (15), (16) and (17). Spur gear (17) comprises an end stop (18) which stops movement after a few turns of spur gear (15).

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion	F16H19/00
Screw mechanisms with means specially adapted for stopping	F16H25/2015
actuators in the end position, or with position sensing means	

F16H35/008

Insert: The following new Definition statement.

Definition statement

This place covers:

DATE: MAY 1, 2025

PROJECT RP10485

Gearings or mechanisms that include means to vary the rotational phase relationship, e.g. gearings that include means to vary the angular relationship between the input and the output shaft.

Illustrative examples of subject matter classified in this place:

50b 50a

1a.

DATE: MAY 1, 2025

PROJECT RP10485

Figures 1a and 1b illustrate a toothed gearing (28) including input shaft (30), output shafts (32) and (34), and planetary gearing (38). The rotational phase relationship between output shafts (32) and (34) is adjusted by rotating ring gear (40) via worm (48) about an angle which corresponds to the desired phase relationship between shafts (32) and (34).

PROJECT RP10485

Figure 2 illustrates a chain-type gearing including input sprocket (30), output sprocket (62), tensioner sprocket (64) and sprocket (40). The rotational phase relationship between input sprocket (30) and output sprocket (62) is adjusted by varying the position of sprocket (40).

DATE: MAY 1, 2025

PROJECT RP10485

References

<u>Delete</u>: The entire Limiting references section.

Application-oriented references

<u>Replace</u>: The existing Application-oriented references table with the following updated table.

Valve-gear or valve arrangements characterised by the provision of	F01L1/352
means for changing the timing of the valves without changing the	
duration of opening, changing the angular relationship between	
crankshaft and camshaft, using bevel or epicyclic gear	

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Couplings with means for varying the angular relationship of two	F16D3/10
coaxial shafts during motion	

F16H35/02

Insert: The following new Definition statement.

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

Figures 1a and 1b illustrate a toothed gearing including input shaft (2) and output gear (3). Rotary motion of input shaft (2) is conveyed via elliptic gears (11a) and (11b), thereby varying the velocity ratio during any single revolution of elliptic gears (11a) and (11b), such that the velocity ratio is varied cyclically.

PROJECT RP10485

478

PROJECT RP10485

2b.

Figures 2a and 2b illustrate a toothed gearing including input shaft (10) and output shaft (20). Rotary motion of input shaft (10) is conveyed via gears (11) and (21), thereby varying the velocity ratio during any single revolution of gears (11) and (21) such that the velocity ratio is varied cyclically.

References

Informative references

<u>Replace</u>: The existing Informative references text with the following updated text.

Step-by-step mechanisms without freewheel members for	F16H27/04
converting continuous rotation into a step-by-step rotary movement	
Gearings with eccentrically mounted gears, e.g. for cyclically varying	F16H2035/001
ratio	

DATE: MAY 1, 2025

PROJECT RP10485

Gearings comprising pulleys or toothed members of non-circular	F16H2035/003
shape, e.g. elliptical gears	

F16H35/06

References

Limiting references

Delete: The following row from the existing Limiting references table.

Support of transmission casing, e.g. torque arms, or attachment to	F16H57/025
other devices	

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Support of gearboxes, e.g. torque arms, or attachment to other	F16H57/025
devices	

F16H35/10

Insert: The following new Definition statement.

Definition statement

This place covers:

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

Figures 1a and 1b illustrate a torque limiter comprising a planetary gear train having a sun gear (5), planetary gears (6), a planetary carrier (8) and a brake (11). Brake (11) includes four brake lamellae (18, 18', 19, 19'), which are biased by spring (14) against brake lamellae (15, 16, 17) which are fixed to housing (1). If the torque exceeds a certain threshold, brake (11) starts to slip such that torque transfer from sun gear (5) to planet carrier (8) is limited and overload is prevented.

PROJECT RP10485

2a.

2b.

Figures 2a and 2b illustrate a torque interrupter comprising a pair of toothed gears (52) and (54). If the torque exceeds a certain threshold, gear (52) is radially moved out of mesh against the force of biasing spring (76) such that torque transfer is interrupted and overload is prevented.

DATE: MAY 1, 2025

PROJECT RP10485

References

<u>Delete</u>: The entire Limiting references section.

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Screw mechanisms with means for avoiding overloading	F16H25/2021
Monitoring wear or stress of transmission elements, e.g. for	F16H57/01
triggering maintenance	
Monitoring of overload conditions	F16H2057/016
Detection of mechanical transmission failures	F16H2057/018
Couplings for transmitting rotation	F16D
Slip couplings, e.g. slipping on overload, for absorbing shock	F16D7/00
Couplings with safety member for disconnecting, e.g. breaking or	F16D9/00
melting member	

Insert: The following new Synonyms and Keywords section.

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

- Means for preventing overload
- "Torque limiter" and "torque interrupter"

F16H37/00

<u>Replace</u>: The existing Definition statement with the following updated statement.

Definition statement

- Combination of toothed and friction gearings;
- Combination of other mechanical gearings not provided in groups F16H1/00 -F16H35/00;
- Gearings comprising essentially combinations of gearings where more than a single additional gearing element, like a lever, link or cam, is added to the basic gearing.

DATE: MAY 1, 2025

PROJECT RP10485

Application-oriented references

<u>Replace</u>: The existing Application-oriented references table with the following updated table.

Applications of underdrives or overdrives in motor vehicles,	B60K
combinations with differential gearings in motor vehicles	
Arrangement or mounting of transmissions in vehicles for	B60K17/34
driving both front and rear wheels, e.g. four wheel drive	
vehicles	

F16H37/021

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Combination of toothed and continuously variable friction gearings [CVTs] without power split, e.g. the toothed gearing is arranged in series to the friction CVT or in parallel thereto for fully bypassing the friction CVT without power split.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a combination of a belt-type (CVT P1, B, P2) in series with a two-speed toothed transmission (LG1, LG2, HG1, HG2).

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Combinations of gearing with a plurality of driving or driven	F16H37/06
shafts, or with arrangements for dividing torque between	
two or more intermediate shafts	
Power-split CVTs with differential gearing	F16H37/084

F16H37/027

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

The standard idle gear for reversing in a transmission is replaced by a gear with an endless flexible member, e.g. a chain transmission to establish the reverse ratio. In general, this will not include a CVT.

References

Insert: The following new Limiting references section.

Limiting references

This place does not cover:

Combinations of gearing with a plurality of driving or driven	F16H37/06
shafts, or with arrangements for dividing torque between	
two or more intermediate shafts	

DATE: MAY 1, 2025

PROJECT RP10485

F16H37/06

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Combination of toothed or friction gearings with a plurality of driving or driven shafts, or with arrangements for dividing torque within the gearing, e.g. power split.

References

<u>Delete</u>: The entire Limiting references section.

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with constant gear ratio	F16H1/22
without gears having orbital motion involving more than two	
intermeshing members with a plurality of driving or driven shafts, or	
with arrangements for dividing torque between two or more	
intermediate shafts	

F16H37/08

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Combinations of essentially only toothed or friction gearings with planetary gearing for dividing or summing torque between two or more torque paths, e.g. power split.

References

<u>Delete</u>: The entire Limiting references section.

Insert: The following new Application-oriented references section.

DATE: MAY 1, 2025

PROJECT RP10485

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Arrangement or mounting of differential gearing in vehicles	B60K17/16
Arrangement or mounting of transmissions in vehicles for driving	B60K17/346
both front and rear wheels, e.g. four-wheel-drive vehicles, having a	
differential gear as a transfer gear	

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Toothed gearings for conveying rotary motion with constant gear	F16H1/22
ratio having a plurality of driving or driven shafts, or with	
arrangements for dividing torque between two or more intermediate	
shafts	
Differential gearing	F16H48/00
Arrangement or mounting of electrical propulsion units with one	B60K2001/001
Arrangement or mounting of electrical propulsion units with one motor mounted on a propulsion axle for rotating right and left wheels	B60K2001/001

Insert: The following new Special rules section.

Special rules of classification

Combinations of toothed or friction gearings with axle differentials are only classified in F16H37/08 if they constitute new and unobvious or non-trivial information with regard to the axle differential. In vehicle powertrains, almost any multi-speed transmission is followed by an axle differential. Consequently, the mere presence of axle differentials merely constitutes trivial technical information and is, thus, not classified in F16H37/08.

Insert: The following new Glossary of terms section.

DATE: MAY 1, 2025

PROJECT RP10485

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

differential gearing	planetary gear trains with differential action, i.e. so-
	called summing or distributing planetary gear trains, e.g.
	for power split. It does not refer to planetary gear trains
	in which one of its elements, e.g. sun gear, ring gear or
	planet carrier, is permanently fixed to the housing, since
	this would not provide a differential action.

Insert: The following new Synonyms and Keywords section.

Synonyms and Keywords

In patent documents, the following words/expressions are often used as synonyms:

• "Power split" and "torque split"

F16H37/12

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearings comprising essential combinations of gearings where more than a single additional gearing element, like a lever, link or cam, is added to the basic gearing.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

1b.

PROJECT RP10485

Figures 1a and 1b illustrate a combination of a toothed hypoid gearing (25, 27), a toothed rack and pinion gearing (22, 24) and a lever gearing (10, 11, 12, 13, 14). Input oscillating motion of pinion (27) is converted into reciprocating motion of rack (22), which is converted into oscillating motion of lever (10).

2.

Figure 2 illustrates a combination of a toothed gearing (64, 84), a cam gearing (52, 62) and a lever gearing (60, 61). Oscillating motion of input cam gear (20) is converted into oscillating motion of lever (60) and oscillating motion of output gear (80).

DATE: MAY 1, 2025

PROJECT RP10485

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

Gearings with cranks, eccentrics or like members fixed to	F16H21/14
one rotary member and guided along tracks on the other	
Crank or eccentric gearings with cams or additional guides,	F16H21/28,
or with members having rolling contact	F16H21/30

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Screw mechanisms with both nut and screw being driven	F16H25/2018
Screw mechanisms driving an oscillating lever, e.g. lever	F16H2025/2043
with perpendicular pivoting axis	
Gearings comprising primarily only cams and cam followers	F16H25/16
for interconverting rotary motion and oscillating motion	

F16H43/00

References

<u>Delete</u>: The entire Limiting references section.

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Generating mechanical vibrations of infrasonic, sonic or	B06B
ultrasonic frequency	
Percussive tools with fluid-pressure drive	B25D9/00
Mine roof supports for step-by-step movement	E21D23/00
Reciprocating-piston machines without rotary main shaft	F01B11/08
with direct fluid transmission link	
Details of fluid pumps or motors	F04B, F04C
Fluid-actuated devices for displacing a member from one	F15B15/00
position to another; Gearing associated therewith	

DATE: MAY 1, 2025

PROJECT RP10485

F16H45/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

The combination of a fluid gearing with couplings or clutches. For example, a hydrodynamic torque converter with claw couplings or friction clutches used to lock up the torque converter or to uncouple the torque converter from the engine or the transmission.

References

Limiting references

<u>Delete</u>: The following <u>row</u> from the existing Limiting references table.

Fluid gearing with at least two mechanical connections between	F16H47/085
the hydraulic device and the mechanical transmissions	

Informative references

Insert: The following <u>new row</u> into the existing Informative references table.

Fluid gearing with at least two mechanical connections betwee	n F16H47/085
the hydrokinetic gearing and the mechanical gearing, the	
orbital motion	

F16H48/00

References

Informative references

Insert: The following <u>new row</u> into the existing Informative references table.

Gears having orbital motion for change speed gearing	F16H3/44
--	----------

DATE: MAY 1, 2025

PROJECT RP10485

Delete: The entire Special rules section.

F16H48/05

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Combinations of several interconnected differential sets, e.g. a combination of a right-and-left differential with a center differential, or a relationship as between center differential unit and front differential unit.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates two differentials (12) and (14) are interconnected with each other such that one of the outputs of a first differential (14) is connected to the input of second differential (12).

F16H48/14

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials having cams, for example, in between the two output members.

Illustrative example of subject matter classified in this place:

1a.

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a differential without orbital gearing comprising cam groove (31) and balls (15) interacting between differential output members (12B) and (13B).

F16H48/19

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials that divide one input into two outputs without using planet gears but by using two linked clutches.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a differential (13) includes clutches (21, 25) which are used to provide differential rotary motion between output members (17) and (18).

F16H48/26

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a differential gearing (207) includes viscous coupling (211) and multi-plate friction clutch (215). Both the viscous coupling (211) and the multi-plate friction clutch (215) are used to limit differential action between the differential outputs (233) and (237).

F16H48/27

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials, the differential action of which is suppressed by fluid pressure that is generated, for example, by internal pumps actuated by the difference of rotation numbers between two outputs.

Illustrative examples of subject matter classified in this place:

PROJECT RP10485

1a.

PROJECT RP10485

Figures 1a and 1b illustrate a differential (215) including a multi-plate friction clutch (244, 245) and a mechanical pump (252, 254, 256). The pump (252, 254, 256) actuates a piston to compress the multi-plate friction clutch (244, 245) in order to limit the differential action of the differential outputs (226a) and (226b).

F16H48/28

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials, the differential action of which is suppressed in response to a difference in torque that is generated between two outputs. The differential action is suppressed using self-locking or self-braking gears.

DATE: MAY 1, 2025

PROJECT RP10485

F16H48/285

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials, the differential action of which is suppressed by, for example, meshing reaction forces of helical gears that are arranged in parallel axes, by way of the said helical gears being pushed against the casing of the differentials.

Illustrative examples of subject matter classified in this place:

1a.

DATE: MAY 1, 2025

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a differential (1) including helical orbital gears (9) and (11) intermeshing with parallel helical side gears (5) and (7). When a thrust force occurs in direction A, side gears (5) and (7) are pushed against housing (3) through thrust bearings (39) and (41), which suppresses differential action between side gears (5) and (7).

DATE: MAY 1, 2025

PROJECT RP10485

F16H48/29

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials, the differential action of which is suppressed by, for example, meshing reaction forces of helical gears or worms that are arranged in orthogonal axes, by way of the said helical gears or worms being pushed against the casing of the differentials.

Illustrative example of subject matter classified in this place:

PROJECT RP10485

The Figure illustrates a differential (10) including worm gears (24) and (26) intermeshing with perpendicular helical side gears (20) and (22). When thrust forces (34, 36) occur, side gears (20) and (22) are pushed against housing (12) through washer (48) and spring (54), which suppresses differential action between side gears (20) and (22).

DATE: MAY 1, 2025

PROJECT RP10485

F16H48/295

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials, in which the engaging power of a pilot clutch is amplified by using a cam, for example, and thereby, to have a main clutch engaged.

Illustrative example of subject matter classified in this place:

The Figure illustrates a differential (1) including orbital gears (23) intermeshing with bevel side gears (11) and (13). Differential (1) further includes main clutch (39), pilot clutch (33), and cam mechanism (35) for suppressing differential action. Cam mechanism (35) amplifies the engagement force of pilot clutch (33), which amplifies the engagement force of main clutch (39) via intermediate pressure member (65).
DATE: MAY 1, 2025

PROJECT RP10485

F16H48/32

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Differentials, the differential action of which is suppressed by, for example, fluidic actuators that are controllable from outside of the differential.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a differential (10) including bevel differential gearing (12), multi-plate friction clutch (22), and fluid pressure actuator (23). Fluid pressure actuator (23) actuates multi-plate friction clutch (22) in order to suppress differential action of the differential outputs (20).

F16H48/36

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Those differentials that are intentionally made to have different rotation numbers between two outputs for the purpose of improving the turning performance or controlling the yaw motion of vehicles.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a differential (9I) including differential bevel gearing (7), clutch (12) and speed change mechanism (101). Speed change mechanisms (101) is used to change the speed of differential output (14), which generates a speed difference between differential outputs (13) and (14).

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Arrangement or mounting of control means for varying left-right	B60K2023/043
torque distribution in differential gearing, e.g. torque vectoring	

F16H48/40

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Casings that accommodate the differential mechanism internally and are rotated by the power from the input shaft.

Illustrative example of subject matter classified in this place:

DATE: MAY 1, 2025

PROJECT RP10485

1a.

DATE: MAY 1, 2025

PROJECT RP10485

1b.

Figures 1a and 1b illustrate a differential (100) includes rotating differential case (120) having constructional cut-outs (120i).

F16H51/00

Special rules of classification

<u>Replace</u>: The existing Special rules text with the following updated text.

The particular levers are also classified with the mechanism in which they are used.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 53/00

Definition statement

Insert: A period at the end of the existing Definition statement.

Cams, camshafts or cam followers.

References

Application-oriented references

<u>Replace</u>: The existing Application-oriented references table with the following updated table.

Cams specially adapted for reciprocating-piston liquid	F03C1/0409,
engines	F03C1/0631,
	F03C1/0668

F16H 53/025

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Constructional features of camshafts;
- Assembling or manufacturing of camshafts.

References

Informative references

Making crankshafts by working or processing metal tubes,	B21D53/845
rods or profiles without essentially removing material	
Single-purpose machines for grinding of cams or camshafts	B24B19/12

DATE: MAY 1, 2025

PROJECT RP10485

F16H55/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Different kind of gear elements for conveying rotary motion with and without teeth, e.g. gears, racks, worms, pulleys or chain wheels;
- Constructional features of these elements;
- Profiles of teeth for gearings.

References

Limiting references

<u>Replace</u>: The Limiting references table with the following updated table.

Of screw-and-nut gearing	F16H 25/00,
	F16H 25/20

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Pulley-blocks for lifting or hauling appliances	B66D3/04
Shafts, Bowden mechanisms, cranks, eccentrics, bearings,	F16C
pivotal connections, crossheads, connecting-rods	
Chains, belts	F16G

F16H55/06

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Use of materials for toothed gear members;
- Toothed gear members characterised by their material properties achieved by particular treatments;
- Gear features related to production by moulding, e.g. injection moulding.

DATE: MAY 1, 2025

PROJECT RP10485

References

<u>Delete</u>: The entire Application-oriented references section.

<u>Replace</u>: The existing Informative references table with the following updated table.

Informative references

Materials or coatings for screws or nuts	F16H2025/249
Coatings for lubrication	F16H57/041
Making gears or toothed racks	B23F
Making forged or pressed wheels with gear-teeth	B21K1/30
Making metal gear parts, e.g. gear wheels, by operations	B23P15/14
not covered elsewhere	
Making metal gear wheels, racks, spline shafts or worms by	B21H5/00
rolling	
Making gear wheels by working or processing of sheet	B21D53/28
metal or metal tubes, rods or profiles without essentially	
removing material; Punching	
Producing gear wheels from plastics or substances in a	B29D15/00
plastic state	
Gear wheels or similar articles with grooves or projections	B29L2015/00
produced by shaping or joining of plastics	
Heat treatment for gear wheels, worm wheels or the like	C21D9/32
Processes for the electrolytic or electrophoretic production	C25D
of coatings	
Heating by electromagnetic field	H05B6/00

F16H55/10

References

Application-oriented references

<u>Replace</u>: The existing Application-oriented references table with the following updated table.

Gearworks for clocks and watches	G04B13/00

DATE: MAY 1, 2025

PROJECT RP10485

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Worm gear transmissions with balls between the	F16H1/163
cooperating gear elements	

F16H55/17

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Toothed wheels;
- Toothed belt pulleys.

Special rules of classification

Replace: The existing Special rules text with the following updated text.

Wheels having constructively simple tooth shapes, e.g. pins or balls, are additionally classified in F16H55/10.

The use of material is additionally classified in F16H55/06. In particular, moulded gears are additionally classified in F16H2055/065.

F16H55/52

Definition statement

Replace: The existing Definition statement with the following updated statement.

Pulleys or friction discs where the diameter of the pulley or friction disc can be modified in order to adjust the placement of the flexible member.

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Control of continuously variable gearing with endless flexible members	F16H61/662
A single final output mechanism having an indefinite number of positions and being moved by a single final actuating mechanism	F16H63/06

F16H57/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Monitoring wear or stress of transmission elements;
- Gearboxes, mounting gearing therein;
- Features related to lubrication or cooling;
- General details of gearings with members having orbital motion;
- Arrangement for adjusting or taking-up backlash not provided for elsewhere.

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

General details of screw-and-nut gearing	F16H25/00
General details of fluid gearing	F16H39/00 - F16H43/00

F16H2057/005

References

Informative references

Shaft support structures with adjustment of gear	F16H57/022
shafts or bearings	

DATE: MAY 1, 2025

PROJECT RP10485

F16H2057/0087

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Computer-aided design [CAD] per se G06F30/00		
	Computer-aided design [CAD] per se	G06F30/00

F16H2057/018

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Fixing of, or adapting to, transmission failure	F16H2057/0081
Detecting malfunction or potential malfunction for	F16H61/12
transmission control	

F16H2057/02034

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Structural association of gears with electric machines H02K7/116

F16H2057/02091

References

Informative references

DATE: MAY 1, 2025

PROJECT RP10485

Using particular materials for reducing weight of gearbox F16H57/032

F16H57/025

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement. Keep the image as is.

Means for supporting gearboxes or attaching them to other devices in order to prevent the casing from being moved due to reaction forces or torques produced by the gearing, e.g. torque arms.

Illustrative example of subject matter classified in this place:

F16H57/04

Definition statement

Insert: A period at the end of the Definition statement.

Lubrication or cooling of gearings.

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

Control of lubrication or cooling in hydrostatic gearing	16H61/4165
--	------------

Informative references

Insert: The following <u>new row</u> into the existing Informative references table.

Lubricating of machines and engines in general	F01M
--	------

DATE: MAY 1, 2025

PROJECT RP10485

Delete: The entire Special rules section.

F16H57/0408

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Draining of transmission fluids;
- Filling of transmission fluids;
- Exchange of transmission fluids, e.g. fluids for automatic transmissions;
- Cleaning or flushing of transmissions.

References

Insert: The following new Application-oriented references section.

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Filling or draining lubricant of or from machines or engines	F01M11/04
Servicing, maintaining, repairing, or refitting of vehicles	B60S5/00

F16H57/041

References

Informative references

Use of materials for toothed members	F16H55/06
Bearings with solids as lubricant, e.g. dry coatings, powder	F16C33/6696

DATE: MAY 1, 2025

PROJECT RP10485

F16H57/0412

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Cooling or heating of the transmission, its elements, e.g. gears, casings or of the lubricant.

References

<u>Delete</u>: The entire Limiting references section.

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Arrangement in connection with cooling of propulsion units	B60K11/00
Arrangement or mounting of electrical propulsion units with	B60K2001/003
means for cooling the electric propulsion units	
Controlling the temperature of batteries	B60L58/24
Cooling of machines and engines in general	F01P
Cooling circuits not specific to a single part of engine or	F01P3/20
machine	
Controlling of coolant flow in engines or machines	F01P7/00
Engine or machine cooling circuit using a lubricant cooler for	F01P2060/045
transmissions	
Features relating to cooling in friction clutches	F16D13/72
Details of fluid actuated clutches in view of cooling and	F16D25/123
lubrication	
Hydraulic circuits combining clutch actuation with clutch	F16D2048/029
lubrication or cooling	
Oil or fluid cooling of clutches or couplings	F16D2300/0214
Arrangements for cooling or ventilating electric machines	H02K9/00

F16H57/0417

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

The "heat exchangers" shall include lubricant cooled or heated by heat exchange with another fluid, e.g. with water, oil or exhaust gas.

DATE: MAY 1, 2025

PROJECT RP10485

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Heat exchangers per se	F28D
------------------------	------

F16H57/0434

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

All kinds of lubrication pumps for gearing or special means to produce flow of lubrication in gearing. Also, lubrication control units or valves to supply the transmission with lubricant.

References

Informative references

Insert: The following <u>new row</u> into the existing Informative references table.

Grooves on rotary parts with pumping effect for supplying	F16H57/0428
lubricant	

F16H57/0436

References

<u>Delete</u>: The entire Limiting references section.

Informative references

Arrangement of lubrication pumps	F16H57/0441
Supply of control fluid; Pumps or accumulators therefor	F16H61/0025

DATE: MAY 1, 2025

PROJECT RP10485

Vane pumps per se	F04C2/344
Gear pumps per se	F04C2/08
Lubrication of pumps per se	F04C29/02
Lubricating pumps per se	F16N13/00

F16H57/0445

References

<u>Delete</u>: The entire Limiting references section.

F16H57/0447

<u>Delete</u>: The entire Relationships section.

References

Informative references

Insert: The following new row into the existing Informative references table.

	Exchange, dra	ining or filling	of transmission	lubricant	F16H57/0408
--	---------------	------------------	-----------------	-----------	-------------

Insert: The following new Special rules section.

Special rules of classification

F16H57/0447 should not be allocated to documents which merely disclose a splash lubrication. The lubricant level of any splash lubrication sump depends on the rotational speed of the splashing element, but, if a document does not explicitly disclose the problem of "level control", classification should be given only in group F16H57/0457 for "splash lubrication".

F16H57/0447 shall also not be allocated to documents dealing with "providing a correct fill level". These are classified in F16H57/0408 "exchange or filling of transmission lubricant".

DATE: MAY 1, 2025

PROJECT RP10485

F16H57/045

<u>Delete</u>: The entire Relationships section.

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Lubrication supply or pressure control for different gearbox	F16H57/0445
casings or sections	

Insert: The following new Special rules section.

Special rules of classification

Group F16H57/045 "lubricant storage reservoir" is essentially given for "additional reservoirs" or for non-trivial disclosure of gear sumps. It shall not be given for the mere disclosure of a gear sump.

F16H57/0457

Definition statement

Insert: A period at the end of the Definition statement.

Splash lubrication, e.g. by gearing elements plunging into an oil bath.

References

<u>Replace</u>: The existing Informative references table with the following updated table.

Informative references

Characterised by increasing efficiency, e.g. by reducing splash losses	F16H57/0409
Control of lubricant levels	F16H57/0447

DATE: MAY 1, 2025

PROJECT RP10485

F16H57/0475

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Gearboxes associated or combined with the crankcase of	F16H2057/0203
the engine	
Controlled cooling or heating of lubricant; Temperature	F16H57/0413
control therefor	
Joint lubrication or cooling of electric machines and gearing	F16H57/0476
Arrangement in connection with cooling of propulsion units	B60K11/00
Lubricating of machines and engines in general; Lubricating	F01M
internal combustion engines; Crankcase ventilating	
Cooling of machines and engines in general	F01P
Engine or machine cooling circuit using a lubricant cooler for	F01P2060/045
transmissions	

Insert: The following new Special rules section.

Special rules of classification

In case of controlled cooling or heating of lubricant, classification should also be given in group F16H57/0413.

F16H57/0476

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearboxes combined or associated with electric	F16H2057/02034
machines	
Controlled cooling or heating of lubricant; Temperature	F16H57/0413
control therefor	
Joint lubrication or cooling of engine and gearing	F16H57/0475

DATE: MAY 1, 2025

PROJECT RP10485

Arrangement in connection with cooling of propulsion units	B60K11/00
Arrangement or mounting of electrical propulsion units with means for cooling the electric propulsion units	B60K2001/003
Controlling the temperature of batteries	B60L58/24
Electric machines with channels or ducts for flow of cooling medium in stationary parts of the magnetic circuit	H02K1/20
Electric machines with channels or ducts for flow of cooling medium in rotating parts of the magnetic circuit	H02K1/32
Electric machines with channels or ducts for flow of cooling medium in casings	H02K5/20
Arrangements for cooling or ventilating electric machines	H02K9/00

Special rules of classification

<u>Replace</u>: The existing Special rules text with the following updated text.

In case of controlled cooling or heating of lubricant, classification should also be given in group F16H57/0413.

F16H57/048

Special rules of classification

<u>Replace</u>: The existing Special rules text with the following updated text.

For classification in subgroups of F16H57/04, if there is no particular application place for the type of gearing in the subgroups of F16H57/048 - F16H57/0498, a group outside F16H 57/04 should be given at least as "additional information" in order to identify the type of gearing being lubricated, cooled or heated. For example, in a case of lubrication of wobble plate gears, a group in F16H23/00 should be given at least as "additional information".

DATE: MAY 1, 2025

PROJECT RP10485

F16H2057/087

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Toothed gearing using gears having orbital motion for conveying rotary motion with variable gear ratio or for	F16H3/44
reversing rotary motion	
Constructional features of final output mechanisms	F16H63/3026
comprising friction clutches or brakes	
Constructional features of final output elements, i.e. the final	F16H2063/3093
elements to establish gear ratio, e.g. coupling sleeves or	
other means establishing coupling to shaft	

F16H59/00

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Detecting or using driving style of a driver, e.g. for adapting shift schedules;
- Overriding automatic control;
- Selector apparatus, e.g. gear shift or range levers;
- Control inputs being a function of different parameters, e.g. torque, speed, transmission status, road condition, load, steering, clutch, or engine.

References

<u>Delete</u>: The entire Limiting references section.

Insert: The following new Application-oriented references section.

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

DATE: MAY 1, 2025

PROJECT RP10485

Varying the speed ratio of driving or feeding mechanisms of machine tools	B23Q5/12, B23Q5/46
Conjoint control of drive units for vehicles	B60W
Cycle transmissions	B62M
Marine propulsion	B63H

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Final output mechanisms in the gearbox, e.g. selector or shifting means in the gearbox	F16H63/00
Input parameters for road vehicle drive control systems not related to the control of a particular	B60W2510/00 - B60W2556/00
subunit	

Special rules of classification

<u>Replace</u>: The existing Special rules text with the following updated text.

The input values for the control system represent in most cases only 'additional information'. The input values for the control system are classified as 'invention information' only if the measuring device or the method for measuring the value forms an essential part of the invention.

In groups F16H59/00 - F16H63/00, clutches positioned within a gearbox are considered as comprising part of the gearings.

When classifying in groups F16H59/00 - F16H63/00, control inputs or types of gearing which are considered to represent information of interest for search, may also be classified. Such non-obligatory classification should be given as "additional information", e.g. selected from subgroup F16H61/66 relating to the type of gearing controlled or from group F16H59/00 relating to control inputs.

Glossary of terms

<u>Replace</u>: The existing Glossary of terms table with the following updated table.

DATE: MAY 1, 2025

PROJECT RP10485

mechanism	a kinematic chain consisting either of a single element or alternatively of a series of elements, the position of each point on the kinematic chain being derivable from the position of any other point on the chain, and therefore, for a given position of a point on one of the elements forming the kinematic chain there is only one position for each of the other points on the element or series of elements forming the kinematic chain
final output mechanism	the mechanism which includes the final output element, e.g. hydraulic or electromagnetic clutch, synchronizer clutch, ball and ramp clutch
final output element	the final element which is moved to establish a gear ratio, i.e. which achieves the linking or coupling between two power transmission means, e.g. reverse idler gear, gear cluster, coupling sleeve, apply piston of a hydraulic clutch
actuating mechanism	the mechanism, the movement of which causes the movement of another mechanism by being in mutual contact
final actuating mechanism	the mechanism actuating the final output mechanism, i.e. this mechanism actuates the final output mechanism which includes the final output element, e.g. coupling sleeve, shift fork, hydraulic circuit, electromagnetic solenoid, motor

F16H2059/0221

References

Informative references

Range selector apparatus for different transmission modes	F16H2059/082
Selecting between different operative modes in road	B60W30/182
vehicle drive control systems not related to the control of a	
particular subunit	

DATE: MAY 1, 2025

PROJECT RP10485

F16H2059/023

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Voice control of electric circuits specially adapted for	B60R16/0373
vehicles	

F16H2059/0239

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Multiple final output mechanisms being moved by a single	F16H63/14
common final actuating mechanism, the final output	
mechanisms being successively actuated by progressive	
movement of the final actuating mechanism	

F16H2059/0243

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Range selector apparatus comprising push button devices F16H59/12

DATE: MAY 1, 2025

PROJECT RP10485

F16H2059/026

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Ratio selector apparatus comprising a final actuating	F16H59/042
mechanism	

F16H61/00

<u>Delete</u>: The entire Definition statement.

References

Insert: The following new Application-oriented references section.

Application-oriented references

Examples of places where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Varying the speed ratio of driving or feeding mechanisms of	B23Q5/12,
	D23Q3/40
Conjoint control of drive units for vehicles	B60W
Cycle transmissions	B62M
Marine propulsion	B63H

Insert: The following new Special rules section.

Special rules of classification

F16H61/04 is used for the more general aspects of gear shifting, since there is no proper place in IPC for gear shifting per se. In other words, the gear smooth effect is not an essential feature for classification in F16H61/04.

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/0021

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Pumps and control circuits for generating or controlling line pressure for transmission control.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Layout of electro-hydraulic control circuits for gearshift control	F16H61/0206
Layout of hydraulic control circuits for gearshift control	F16H61/0267
Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force using electric control signals for shift actuators	F16H61/2807
Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a hydraulic motor	F16H61/30
Control for optimising pump efficiency in CVTs with endless flexible members	F16H2061/66286

F16H2061/0037

Insert: The new Definition statement.

Definition statement

This place covers:

Supply of lubrication of the transmission is taken from the hydraulic control supply.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Lubrication supply forming part of the transmission control	F16H57/0446
unit	

F16H2061/004

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Control of venting of hydrostatic transmissions	F16H61/4174
Removal or measurement of undissolved gas in general	F15B21/044

F16H61/0059

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearings where braking is achieved by simultaneous engagement of two or more engaging means, e.g. clutches or brakes, which are applied for different gear ratios. This method of braking the transmission is sometimes used instead of a parking lock.

References

Informative references

Providing engine brake control	F16H61/21
Constructional features of parking lock mechanisms or	F16H63/3416
brakes in the transmission	
Signals to parking lock or parking brake	F16H63/48

DATE: MAY 1, 2025

PROJECT RP10485

F16H2061/0071

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Testing of gearings and transmission mechanisms	G01M13/02

F16H61/02

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Gearshift control units using specific types of shift signals.

Methods for generating shift signals, including:

- Estimating or calculating of optimal gears or ranges therefor;
- Generating or modifying shift maps;
- Selecting a particular map or ratio depending on particular conditions or situations.

References

<u>Delete</u>: The entire Limiting references section.

Informative references

Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force	F16H61/28
Control specially adapted for continuous variable gearings	F16H61/66
Control specially adapted for stepped gearings without	F16H61/688
interruption of drive and with two inputs	
Control specially adapted for change speed gearing in group	F16H61/70
arrangement	

DATE: MAY 1, 2025

PROJECT RP10485

Insert: The following new Special rules section.

Special rules of classification

Control units are classified according to their essential kind of signals as follows:

Control units where gearshift control is controlled by an electric signal, are classified in F16H61/0202. This group includes electro-hydraulic circuits using different solenoids, which are classified in F16H61/0206. A control unit with a single solenoid for a subfunction (e.g. kickdown) is not considered an electro-hydraulic control circuit in the sense of F16H61/0206.

Control units where gearshift control is controlled by hydraulic signals, are classified in F16H61/0262. Control units where gearshift is controlled by hydraulic signals and a subfunction (e.g. kickdown) is controlled by an electric circuit, are classified in F16H61/0262.

Circuits where gearshift control is essentially controlled by purely mechanical forces, e.g. by using centrifugal or gear forces, are classified in F16H61/0293.

F16H61/04

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Controlling the gearing in order to smooth the shift between ratios, e.g. to reduce shift shock.

<u>Delete</u>: The entire Relationships section.

References

Informative references

Control outputs comprising signals to a clutch outside the gearbox	F16H63/46
Control outputs comprising signals to an engine or motor for smoothing gear shifts	F16H63/502

DATE: MAY 1, 2025

PROJECT RP10485

Insert: The following new Special rules section.

Special rules of classification

F16H61/04 is used for the more general aspects of gear shifting, since there is no proper place in IPC for gear shifting per se. In other words, the gear smooth effect is not an essential feature for classification in this area.

If there is pressure control between a releasing gear shift element and an engaging gear shift element, the document is classified in F16H61/06.

F16H61/06

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Control of fluid pressure for a releasing gear shift element or an engaging gear shift element for shift transition from a current ratio to a new target ratio.

<u>Delete</u>: The entire Special rules section.

F16H61/08

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Timing control during shift transition.

Some timing control is always performed during shifting. Therefore, only documents showing special inventive features related to timing control are covered by this group.

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/12

<u>Delete</u>: The entire Definition statement.

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

Detecting malfunction or potential malfunction in control	F16H61/4192
of exclusively hydrostatic gearing	

Informative references

<u>Replace</u>: The following <u>row</u> in the existing Informative references table with the following updated text.

Ensuring safety in case of control system failures, e.g. by	B60W50/02
diagnosing, circumventing or fixing failures, for control	
systems of road vehicle drive controls not related to	
control of a particular sub-unit	

F16H2061/1204

References

Informative references

Braking of gear output shaft using simultaneous	F16H61/0059
engagement of engaging means, e.g. clutches or	
brakes, applied for different gear ratios	

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/16

<u>Delete</u>: The entire Definition statement.

<u>Delete</u>: The entire Relationships section.

References

Limiting references

<u>Replace</u>: The existing Limiting references table with the following updated table.

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Gearshift control characterised by the method for	F16H61/0213
generating electric shift signals	

Insert: The following new Special rules section.

Special rules of classification

Classification in F16H61/16 is related to unfavourable conditions and not to an unintentional control input by the driver. A device where the reverse gear is blocked because the vehicle speed is too high would be classified in F16H61/16. A device for preventing unintended movements of a shift lever (e.g. a shift from fifth gear into reverse) is classified in F16H61/18.

F16H61/18

<u>Delete</u>: The entire Definition statement.

DATE: MAY 1, 2025

PROJECT RP10485

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Constructional features of selector lever handles with lock mechanisms	F16H2059/0282
Locking of the control input device	F16H61/22
Constructional features of the final output mechanism	F16H63/30

F16H61/20

<u>Delete</u>: The entire Definition statement.

F16H61/22

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Locking of a control device with the exception of final output mechanisms, e.g. locking of range lever in the 'Park' position.

F16H2061/226

References

Informative references

Emergency release or engagement of parking locks or	F16H63/3491
brakes in the transmission	

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/28

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Fluid actuators moving the final actuating mechanism;
- Servo actuators moving the final actuating mechanism, e.g. for power assisted shifting;
- Electric actuators, e.g. actuators using electric motors or solenoids, moving the final actuating mechanism;
- Control of actuators for moving the final actuating mechanism.

References

<u>Delete</u>: The entire Limiting references section.

Informative references

Insert: The following <u>new row</u> into the existing Informative references table.

Gearshift control characterised by the method for generating	F16H61/0213
electric shift signals	

F16H61/30

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Fluid motors or actuators for moving final actuating mechanisms, e.g. hydraulic or pneumatic servo actuators, and their related control means.

References

<u>Delete</u>: The entire Limiting references section.

DATE: MAY 1, 2025

PROJECT RP10485

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Inputs being a function of the gearing status	F16H59/68
Gearshift control characterised by the method for	F16H61/0213
generating electric shift signals	
Constructional features of final output mechanisms	F16H63/3023
comprising elements moved by fluid pressure	

F16H61/32

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Electric motors or actuators for moving final actuating mechanisms, e.g. electric servo actuators, and their related control means.

References

Delete: The entire Limiting references section.

Informative references

Insert: The following <u>new row</u> into the existing Informative references table.

Gearshift control characterised by the method for	F16H61/0213
generating electric shift signals	

F16H61/34

<u>Delete</u>: The entire Special rules section.

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/4078

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Devices for connecting the hydrostatic conduits with external sources or consumers, e.g. linear motor actuators of working circuits;
- Switching valves and controls therefor.

F16H61/42

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Control the displacement of a pump and a motor having no specific entry in the following subgroups;
- Conjoint actuation of pump and motor.

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Automatic regulation in accordance with output	F16H61/46
requirements in control of exclusively hydrostatic gearing	

F16H2061/6607

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Lubrication, cooling or heating features of friction gearing F16H57/0487

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/662

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Control of continuously variable gearings using endless flexible members.

<u>Delete</u>: The entire Relationships section.

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members	F16H9/00
A single final output mechanism being moved by a single final actuating mechanism, the final output mechanism	F16H63/06
having an indefinite number of positions	

Insert: The following new Glossary of terms section.

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

control of shifting	control of one or more transmission ratios
---------------------	--

F16H61/66227

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.
DATE: MAY 1, 2025

PROJECT RP10485

Transmission ratio control specially adapted to continuously variable gearings with endless flexible members dependent only on the combination of speed and torque parameters.

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control of shifting specially adapted to continuously variable gearings with endless flexible members and exclusively as a function of speed	F16H61/66231
Control of shifting specially adapted to continuously variable gearings with endless flexible members and exclusively as a function of torque	F16H61/6625

F16H61/66231

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Transmission ratio control specially adapted to continuously variable gearings with endless flexible members dependent only on speed parameters.

F16H61/66236

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

The Figure illustrates a belt-type CVT where the distance between pulley sheaves (9) and (12) is adjusted such that the gear ratio of the belt-type CVT is adjusted, i.e. controlled, by electrical control means in the form of two electric motors each driving two respective screw-nut mechanisms (8). A control unit controls the electric motors exclusively on data provided by a speed sensor measuring the speed of the output shaft.

F16H61/6624

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

DATE: MAY 1, 2025

PROJECT RP10485

(46) through the bevel gears (52, 54) to reposition the tip opening (44) of the pitot tube (42) in the reservoir (40). The fluid inside the fluid reservoir (40) flows into or out of the tip opening (44) of the pitot tube (42) to continually adjust the internal pressure of the hydraulic cylinder (68), as dictated by the rotational velocity of the input shaft (12).

F16H61/66245

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

The Figure illustrates a belt-type CVT comprising centrifugal weights (23) as purely mechanical control means. The higher the speed, the more the centrifugal weights (23) move radially outwards, thereby adjusting the distance between pulley sheaves (18) and (20) and, thus, the transmission ratio of the belt-type CVT.

DATE: MAY 1, 2025

PROJECT RP10485

F16H 61/6625

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Transmission ratio control specially adapted to continuously variable gearings with endless flexible members dependent only on torque parameters.

Illustrative example of subject matter classified in this place:

The Figure illustrates a belt-type CVT comprising cam roller pressure means which provide a pressure for adjusting the distance between pulley sheaves (20) and (22). Proportional to the applied torque, cam roller (32) is axially moved by cam (30) and presses pulley sheave (22) toward pulley sheave (20), thereby adjusting the transmission ratio of the belt-type CVT.

<u>Delete</u>: The entire Relationships section.

Special rules of classification

<u>Replace</u>: The existing Special rules text with the following updated text.

The presence of a torque sensor is not sufficient to classify subject matter in this area. The transmission ratio must be controlled only as a function of torque.

References

Insert: The following new Informative references section.

DATE: MAY 1, 2025

PROJECT RP10485

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control specially adapted to continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing	F16H61/66272
A single final output mechanism being moved by a single final mechanical actuating mechanism, the final output mechanism having an indefinite number of positions	F16H63/067

F16H61/66254

<u>Delete</u>: The entire Definition statement.

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control of shifting specially adapted to continuously	F16H61/66227
variable gearings with endless flexible members and	
exclusively as a function of speed and torque	
Control of shifting specially adapted to continuously	F16H61/66231
variable gearings with endless flexible members and	
exclusively as a function of speed	
Control of shifting specially adapted to continuously	F16H61/6625
variable gearings with endless flexible members and	
exclusively as a function of torque	

F16H61/66259

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

Illustrative example of subject matter classified in this place:

The Figure illustrates a belt-type CVT comprising an input shaft speed sensor (62), an output shaft speed sensor (64) and an oil temperature sensor (52) as electronic sensing means, as well as electronic control means (60) and (80) to control the transmission ratio of the belt-type CVT. Electronic control means (60) and (80) perform shift control on the transmission ratio of the belt-type CVT such that the speed of the input shaft (38) becomes equal to a target speed. In other words, the shift control is controlled as a function of the input and output speeds as well as of the oil temperature.

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/66263

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

DATE: MAY 1, 2025

PROJECT RP10485

The Figure illustrates a belt-type CVT comprising a rod assembly (33) and (34) as mechanical control means connected to an accelerator pedal (36). It further comprises a hydraulic revolution sensor (21) as hydraulic sensing means, and a hydraulic control circuit as hydraulic control means. The hydraulic control circuit includes a pressure medium pump (13) provided on drive shaft (2) at the engine (1) and main coupling (41). Pump (13) removes pressure medium from a reservoir (14) and takes it via a conduit (15) to the control valve (12) from where, depending on the switch position of the control valve, it is then fed via conduits (16, 17) to the hydraulic tensioning means on both sides of the transmission. In other words, the shift control is controlled as a function of the input speed and the position of the accelerator pedal.

It is noted that no electrical sensing or control means are included in the shift control.

F16H61/66268

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

The Figure illustrates a belt-type CVT comprising a lever transmission (2,10) as mechanical control means connected to an accelerator pedal (1). The transmission ratio of the belt-type CVT is varied in response to an engine-driven spring-loaded centrifugal governor (3) and position of the accelerator pedal (1). In other words, the shift control is controlled as a function of the input speed and the position of the accelerator pedal.

F16H61/66272

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Control of pinching or clamping force, e.g. by means of a pressure control, or using input from a torque sensor.

Control of belt slipping, which is inversely related to pinching force.

DATE: MAY 1, 2025

PROJECT RP10485

Control of compensation of centrifugal pressure, i.e. the "extra" secondary pressure that results from the centrifugal effect on the oil in the actuator cylinder used to exert the clamping force.

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Pulleys or friction discs of adjustable construction of which	F16H55/56
the bearing parts are relatively axially adjustable	

F16H2061/66295

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Geometrical relationships.

PROJECT RP10485

The Figure illustrates a belt-type CVT comprising a primary pulley (1) and a secondary pulley (6). The pulleys (1) and (6) are intentionally misaligned in the range of transmission ratios that are most frequently used during operation of the transmission and/or wherein the belt is maximally loaded.

<u>Delete</u>: The entire Special rules section.

References

Insert: The following new Informative references section.

DATE: MAY 1, 2025

PROJECT RP10485

Informative references

Attention is drawn to the following places, which may be of interest for search:

Pulleys or friction discs of adjustable construction of which the	F16H55/56
bearing parts are relatively axially adjustable	
Belt and pulley gearings with variable ratio or for reversing	F16H9/12
rotation motion, and engaging a pulley built-up out of relatively	
axially-adjustable parts in which the belt engages the opposite	
flanges of the pulley directly without interposed belt-supporting	
members	

F16H61/664

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Control of continuously variable gearings with friction gearing.

<u>Delete</u>: The entire Relationships section.

References

<u>Delete</u>: The entire Limiting references section.

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members	F16H15/00
Combinations of essentially only toothed or friction gearings	F16H37/08
with a plurality of driving or driven shafts or with arrangements	
for dividing torque, with differential gearing	

DATE: MAY 1, 2025

PROJECT RP10485

A single final output mechanism being moved by a single final	F16H63/06
actuating mechanism, the final output mechanism having an	
indefinite number of positions	

Insert: The following new Glossary of terms section.

Glossary of terms

In this place, the following terms or expressions are used with the meaning indicated:

control of shifting	control of one or more transmission ratios

F16H61/6645

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Transmission ratio control specially adapted to continuously variable gearings with friction gearing dependent only on the combination of speed and torque parameters.

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control of shifting specially adapted to continuously variable gearings with friction gearing and exclusively as a function of speed	F16H61/6646
Control of shifting specially adapted to continuously	F16H61/6647
variable gearings with friction gearing and exclusively as a	
function of torque	

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/6646

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

Illustrative example of subject matter classified in this place:

The Figure illustrates a friction-type cone CVT comprising centrifugal weights (12) as mechanical control means. As the speed increases, the centrifugal weights (12) move radially outwards, thereby adjusting the transmission ratio of the friction-type cone CVT.

F16H61/6647

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

PROJECT RP10485

Illustrative example of subject matter classified in this place:

The Figure illustrates a friction-type ball CVT comprising an input shaft (2), frictionally engaging balls (8) and a member (10) with a screw-thread connection to an output shaft (3). When the input shaft (2) is rotated in a first direction, balls (8) roll on an internal periphery (1^a) of a relatively fixed housing (1), and thereby move orbitally around the axis of the input shaft (2). As a result, a member (10) together with the output shaft (3) is rotated at a transmission ratio dependent upon the radial position of the balls. When the output shaft (3) is rotatable freely, the compression spring (12) will prevent the member (10) from being moved axially thereby providing a relatively high transmission ratio. However, with increasing load or torque on the output shaft (3), the screw-thread connection between the output shaft (3) and the member (10) will cause the member (10) to move axially, thereby moving the balls (8) radially inwards and reducing the transmission ratio as a function of the load or torque on the output shaft (3).

DATE: MAY 1, 2025

PROJECT RP10485

F16H61/6648

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement. Illustrative example of subject matter classified in this place:

The Figure illustrates a toroidal friction CVT comprising an engine speed (Ne) sensor (34), a torque converter turbine speed (Nt) sensor (32), a transmission output shaft speed (No) sensor (33), a vehicle speed (VSP) sensor (30) and an accelerator opening position (APO) sensor (31) as electronic sensing means, as well as electronic control means (16) and (20) to control the transmission ratio of the toroidal CVT. In other words, the shift control is controlled as a function of the input and output speeds as well as of the position of the accelerator pedal.

DATE: MAY 1, 2025

PROJECT RP10485

References

Insert: The following new Informative references section.

Informative references

Attention is drawn to the following places, which may be of interest for search:

Control of shifting specially adapted to continuously variable gearings with friction gearing and exclusively as a function of speed and torque	F16H61/6645
Control of shifting specially adapted to continuously variable gearings with friction gearing and exclusively as a function of speed	F16H61/6646
Control of shifting specially adapted to continuously variable gearings with friction gearing and exclusively as a function of torque	F16H61/6647

F16H61/6649

Definition statement

<u>Replace</u>: The existing Definition statement with the following updated statement.

- Control of pinching or clamping force, e.g. by means of a pressure control or using input from a torque sensor;
- Control of slipping in the friction gearing (which is inversely related to pinching force);
- Control of compensation of centrifugal pressure, i.e. the "extra" secondary pressure that results from the centrifugal effect on the oil in the actuator cylinder used to exert the clamping force.

F16H63/00

<u>Delete</u>: The entire Definition statement.

References

Insert: The following new Application-oriented references section.

DATE: MAY 1, 2025

PROJECT RP10485

Application-oriented references

Examples where the subject matter of this place is covered when specially adapted, used for a particular purpose, or incorporated in a larger system:

Varying the speed ratio of driving or feeding	B23Q5/12,
mechanisms of machine tools	B23Q5/46
Conjoint control of drive units for vehicles	B60W
Cycle transmissions	B62M
Marine propulsion	B63H

Glossary of terms

<u>Replace</u>: The existing Glossary of terms table with the following updated table.

mechanism	a kinematic chain consisting either of a single element or alternatively of a series of elements, the position of each point on the kinematic chain being derivable from the position of any other point on the chain, and therefore, for a given position of a point on one of the elements forming the kinematic chain there is only one position for each of the other points on the element or series of elements forming the kinematic chain
final output mechanism	the mechanism which includes the final output element, e.g. hydraulic or electromagnetic clutch, synchronizer clutch, ball and ramp clutch
final output element	the final element which is moved to establish a gear ratio, i.e. which achieves the linking or coupling between two power transmission means, e.g. reverse idler gear, gear cluster, coupling sleeve or an apply piston of a hydraulic clutch
actuating mechanism	the mechanism, the movement of which causes the movement of another mechanism by being in mutual contact
final actuating mechanism	the mechanism actuating the final output mechanism, i.e. this mechanism actuates the final output mechanism which includes the final output element, e.g. coupling sleeve, shift fork, hydraulic circuit, electromagnetic solenoid or motor

DATE: MAY 1, 2025

PROJECT RP10485

F16H2063/3046

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Final output mechanisms comprising friction clutches moved	F16H63/3043
by electrical or magnetic force	

F16H2063/3093

References

Informative references

<u>Replace</u>: The existing Informative references table with the following updated table.

Constructional features of final output mechanisms comprising friction clutches or brakes moved by fluid	F16H63/3026
pressure	
Constructional features of final output mechanisms	F16H63/3043
comprising friction clutches or brakes moved by electrical or	
magnetic force	
Constructional features of final output mechanisms	F16H2063/3046
comprising electromagnetic clutch for coupling gear wheel to	
shaft moved by electrical or magnetic force	

DATE: MAY 1, 2025

PROJECT RP10485

2. B. DEFINITIONS QUICK FIX

Symbol	Location of change (e.g., section title)	Existing reference symbol or text	Action; New symbol; New text
F16H35/00			Delete the entire definition
F16H61/68			Delete the entire definition

Notes:

Use this Definitions Quick Fix (DQF) table to:

- Delete an entire definition
- Delete an entire section
- Change a reference symbol
- Delete a reference symbol
- Delete text in a References section
- Correct one error in spelling, article use, or verb tense

Otherwise, use the standard template.

Reminder: Never delete F symbol definitions.