G05F SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES (regulating the timing or recurrence frequency of pulses in radar or radio navigation systems G01S; regulation of current or voltage, specially adapted for use in electronic time-pieces G04G 19/02; closed-loop systems for regulating non-electric variables by electric means G05D; regulating power supply of digital computers G06F 1/26; for obtaining desired operating characteristics of electromagnets with armatures H01F 7/18; regulating electric power distribution networks H02J; regulating the charging of batteries H02J 7/00; regulation of the output of static converters, e.g. switching regulators H02M; regulation of the output of electric generators H02N, H02P 9/00; controlling transformers, reactors or choke coils H02P 13/00; regulating frequency response, gain, maximum output, amplitude or bandwidth of amplifiers H03G; regulating tuning of resonant circuits H03J; regulating characteristics of transmission lines H04B; controlling electric light sources H05B 39/04, H05B 41/36, H05B 45/10, H05B 45/20, H05B 47/10; electric control of X-ray apparatus H05G 1/30)

NOTES
1. This subclass covers:
 • systems only;
 • use of hydraulic, pneumatic, mechanical, and electrical motors for varying electric characteristics of devices which restore the quantity regulated;
 • the combination of static converters and current or voltage regulators, if the invention resides in the combination.
2. This subclass does not cover elements per se, which are covered by the relevant subclasses.

WARNINGS
1. The following IPC groups are not in the CPC scheme. The subject matter for these IPC groups is classified in the following CPC groups:
 - G05F 3/28 covered by G05F 3/26
 - G05F 5/02 covered by G05F 5/00
 - G05F 5/04 covered by G05F 5/00
 - G05F 5/06 covered by G05F 5/00
 - G05F 5/08 covered by G05F 5/00
2. In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

1/00 Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems

1/02 . Regulating electric characteristics of arcs (arrangements for feeding electrodes B23K 9/12, H05B 7/109, H05B 31/18; automatic control of power for heating by discharge H05B 7/148)

1/04 . by means of saturable magnetic devices
1/06 . by means of discharge tubes
1/08 . by means of semiconductor devices

1/10 . Regulating voltage or current (G05F 1/02 takes precedence; for electric railways B60M 3/02)
1/12 . wherein the variable actually regulated by the final control device is ac (G05F 1/625 takes precedence)
1/13 . . using ferroresonant transformers as final control devices
1/14 . . using tap transformers or tap changing inductors as final control devices
1/147 . . . with motor driven tap switch
1/153 controlled by discharge tubes or semiconductor devices
1/16 combined with discharge tubes or semiconductor devices
regulation (G05F 1/247 takes precedence)
1/26 combined with discharge tubes or semiconductor devices
1/30 semiconductor devices only
1/32 using magnetic devices having a controllable degree of saturation as final control devices
1/325 with specific core structure, e.g. gap, aperture, slot, permanent magnet
1/33 with plural windings through which current to be controlled is conducted
1/335 on different cores
1/34 combined with discharge tubes or semiconductor devices
1/38 semiconductor devices only
1/40 using discharge tubes or semiconductor devices as final control devices
1/42 discharge tubes only
1/44 semiconductor devices only
1/445 being transistors in series with the load
1/45 being controlled rectifiers in series with the load
1/452 [with pulse-burst modulation control]
1/455 with phase control
1/46 wherein the variable actually regulated by the final control device is dc (G05F 1/625 takes precedence)
1/461 [using an operational amplifier as final control device]
1/462 [as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic]
1/463 [Sources providing an output which depends on temperature]
1/465 [Internal voltage generators for integrated circuits, e.g. step down generators]
1/466 [Sources with reduced influence on propagation delay]
1/467 [Sources with noise compensation]
1/468 [characterised by reference voltage circuitry, e.g. soft start, remote shutdown]
1/52 using discharge tubes in series with the load as final control devices
1/54 additionally controlled by the unregulated supply
1/56 using semiconductor devices in series with the load as final control devices (G05F 1/461 takes precedence)
1/561 [Voltage to current converters (amplifiers H03F)]
1/562 [with a threshold detection shunting the control path of the final control device]
1/563 including two stages of regulation at least one of which is output level responsive, e.g. coarse and fine regulation
1/565 sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor (G05F 1/563 takes precedence)
1/567 for temperature compensation
1/569 for protection
1/571 with overvoltage detector
1/573 with overcurrent detector
1/5735 [with foldback current limiting]
1/575 characterised by the feedback circuit
1/577 for plural loads
1/585 providing voltages of opposite polarities
1/59 including plural semiconductor devices as final control devices for a single load
1/595 semiconductor devices connected in series
1/607 using discharge tubes in parallel with the load as final control devices
1/61 including two stages of regulation, at least one of which is output level responsive
1/613 using semiconductor devices in parallel with the load as final control devices (G05F 1/461 takes precedence)
1/614 including two stages of regulation, at least one of which is output level responsive
1/618 using semiconductor devices in series and in parallel with the load as final control devices (G05F 1/461 takes precedence)
1/62 using bucking or boosting dc sources
1/625 wherein it is irrelevant whether the variable actually regulated is ac or dc
1/63 using variable impedances in series with the load as final control devices
1/635 being Hall effect devices, magnetoresistors or thermistors
1/644 being pressure-sensitive resistors
1/648 being plural resistors among which a selection is made
1/652 using variable impedances in parallel with the load as final control devices
1/656 using variable impedances in series and in parallel with the load as final control devices
1/66 Regulating electric power
1/67 to the maximum power available from a generator, e.g. from solar cell
1/70 Regulating power factor; Regulating reactive current or power

3/00 Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties \(\{ \text{current generators specially designed for use in phase-locked loops H03L} \, 7/0891 \} \)
3/02 Regulating voltage or current
3/04 wherein the variable is ac
3/06 using combinations of saturated and unsaturated inductive devices, e.g. combined with resonant circuit
3/08 wherein the variable is dc
3/10 using uncontrolled devices with non-linear characteristics
3/12 being glow discharge tubes
being semiconductor devices

using Zener diodes

{ and field-effect transistors}

using diode-transistor combinations

(G05F 3/18 takes precedence)

{Substrate bias-voltage generators (for static stores G11C 5/146)}

wherein the transistors are of the bipolar type only (G05F 3/26, G05F 3/30 take precedence)

{with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage}

{producing a current or voltage as a predetermined function of the temperature}

{producing a current or voltage as a predetermined function of the supply voltage}

wherein the transistors are of the field-effect type only (G05F 3/26, G05F 3/205, G05F 3/30 take precedence)

{with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage}

{producing a voltage or current as a predetermined function of the temperature}

{producing a voltage or current as a predetermined function of the supply voltage}

Current mirrors

{using field-effect transistors only}

{using bipolar transistors only}

{using both bipolar and field-effect technology}

Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities (G05F 3/26 takes precedence)

Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output

Regulating magnetic variables (details of apparatus for measuring magnetic variables involving magnetic resonance G01R 33/28)