CPC COOPERATIVE PATENT CLASSIFICATION

C CHEMISTRY; METALLURGY
 (NOTES omitted)

CHEMISTRY

C07 ORGANIC CHEMISTRY
 (NOTES omitted)

C07H SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS (derivatives of aldonic or saccharic acids C07C, C07D; aldonic acids, saccharic acids C07C 59/105, C07C 59/285; cyanohydrins C07C 255/16; glycols C07D; compounds of unknown constitution C07G; polysaccharides, derivatives thereof C08B; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification C12N 15/00; sugar industry C13)

NOTES
1. This subclass covers compounds containing saccharide radicals (see the definitions in Note (3) below).
2. This subclass does not cover polysaccharides which for the purpose of this subclass are defined as having more than five saccharide radicals attached to each other by glycosidic linkages.
3. In this subclass, the following expressions are used with the meanings indicated:
 • “saccharide radical” which is derived from acyclic polyhydroxy-aldehydes or acyclic polyhydroxy-ketones, or from their cyclic tautomers, by removing hydrogen atoms or by replacing hetero bonds to oxygen by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium, in accordance with either of the following definitions:
 a. It
 i. consists of an uninterrupted carbon skeleton and oxygen atoms directly attached thereto, and
 ii. is considered to be terminated by every bond to a carbon atom of a cyclic structure and by every bond to a carbon atom having three bonds to hetero atoms, e.g. ester or nitrile radicals, and
 iii. contains within the carbon skeleton an unbranched sequence of at least the six carbon atoms in which at least three carbon atoms — at least two in the case of a skeleton having only four carbon atoms — have one single bond to an oxygen atom as the only hetero bond, and
 A. in a cyclic or acyclic sequence, at least one other carbon atom has two single bonds to oxygen atoms as the only hetero bonds, or
 B. in an acyclic sequence, at least one other carbon atom has one double bond to an oxygen atom as the only hetero bond, the said sequence containing at the most one double bond, i.e. C=O or possibly ketalised C=O, in addition to the hetero bonds mentioned above under (A) or (B), e.g. the compounds

 \[
 \begin{align*}
 &\text{CHO} \\
 &\{\text{CHOH}_n\} \\
 &\text{CH}_2\text{OH}
 \end{align*}
 \]

 of at the most six carbon atoms, having bonds to oxygen as defined in this Note

 \[
 \begin{align*}
 &\text{CHO} \\
 &\{\text{CHOH}_n\} \\
 &\text{CH}_2\text{OH} \\
 &\text{CH}_3
 \end{align*}
 \]

 n being an integer, are classified in group C07H 3/02:
 b. It is also a radical derived from a radical as defined in (a) above by replacing at the most four of the specified hetero bonds to oxygen by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium;
 • “heterocyclic radical” or “hetero ring” is considered to exclude saccharide radicals as defined above
4. Attention is drawn to Note (3) after class C07, which defines the last place priority rule applied in the range of subclasses C07C-C07K and within these subclasses.

WARNING
In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

CPC - 2020.08
Compounds containing only hydrogen atoms and oxygen atoms (preparation by hydrolysis of di- or polysaccharides C13; separation or purification of sucrose, glucose, fructose, lactose or maltose C13)

- Monosaccharides
- Disaccharides
- Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
- Deoxysugars; Unsaturated sugars (1,2-dideoxy-1-enoses C07D); Oosones
- Anhydrosugars, e.g. epoxides

Compounds containing saccharide radicals in which the hetero bonds to oxygen have been replaced by the same number of hetero bonds to halogen, nitrogen, sulfur, selenium, or tellurium

- to halogen
- to nitrogen
- Aminosugars
- to sulfur, selenium or tellurium
- to sulfur

Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond

- Acyclic radicals
- Keto-aldoic acids
- Uronic acids
- Carbo cyclic radicals
- Heterocyclic radicals

Compounds containing a hetero ring sharing at least two hetero atoms with a saccharide radical

- the hetero ring containing only oxygen as ring hetero atoms
- Cyclic acetals
- the hetero ring containing nitrogen as ring hetero atoms

Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof (halo-sugars C07H 5/02; thio-, seleno-, or telluro-sugars C07H 5/08)

- Nitrates; Nitrates
- Phosphates; Phosphites; Polyphosphates

Compounds containing saccharide radicals esterified by carboxylic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids

- by carboxylic acids
- having the esterifying carboxyl radicals attached to acyclic carbon atoms
- Fatty acids
- having the esterifying carboxyl radicals directly attached to carbo cyclic rings
- having the esterifying carboxyl radicals directly attached to heterocyclic rings

Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals

NOTE
In this group, acyl radicals directly attached to hetero atoms of the saccharide radicals are not considered as substituted hydrocarbon radicals.

- Acyclic radicals, not substituted by cyclic structures
- attached to an oxygen atom of the saccharide radical
- being a hydroxyalkyl group esterified by a fatty acid
- Polyoxyalkylene derivatives
- containing unsaturated carbon-to-carbon bonds
- to a nitrogen atom of the saccharide radical
- to a sulfur, selenium or tellurium atom of a saccharide radical
- Lincomycin; Derivatives thereof
- Acyclic radicals, substituted by carbocyclic rings
- Carbocyclic rings
- Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
- Cyclohexane rings not substituted by nitrogen atoms, e.g. kasugamycins
- Cyclohexane rings, substituted by nitrogen atoms
- Cyclohexane rings substituted by at least two nitrogen atoms
- with only one saccharide radical directly attached to the cyclohexyl radical, e.g. destomycin, fortimicin, neamine
- with at least two saccharide radicals directly attached to the cyclohexane rings
- attached to adjacent ring-carbon atoms of the cyclohexane rings
- with only two saccharide radicals in the molecule, e.g. ambutyrlosin, butyrosin, xylostatin, ribostamycin
- with at least three saccharide radicals in the molecule, e.g. lividomycin, neomycin, paromomycin
- attached to non-adjacent ring carbon atoms of the cyclohexane rings, e.g. kanamyicins, tobramycin, nebramycin, gentamicin A2
- a saccharide radical being substituted by an alkylaminic radical in position 3 and by two substituents different from hydrogen in position 4, e.g. gentamicin complex, sisomicin, verdamycin
- Cyclohexane rings substituted by two guanidine radicals, e.g. streptomycins
- Condensed ring systems having three or more rings
- Anthraquinone radicals, e.g. sennosides
- Colchicine radicals, e.g. colchicosides
- Naphthacene radicals, e.g. daunomycins, adriamycins
Polyterpene radicals

17/00 Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals

17/02 . Heterocyclic radicals containing only nitrogen as ring hetero atoms

17/04 . Heterocyclic radicals containing only oxygen as ring hetero atoms

17/06 . Benzopyran radicals

17/065 . Benzo[b]pyrans

17/07 . Benzo[b]pyran-4-ones

17/075 . Benzo[b]pyran-2-ones

17/08 . Hetero rings containing eight or more ring members, e.g. erythromycins

17/00 Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical;
Nucleosides; Mononucleotides; Anhydro-derivatives thereof

19/00 Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical;
Nucleosides; Mononucleotides; Anhydro-derivatives thereof

19/01 . sharing oxygen

19/02 . sharing nitrogen

19/04 . Heterocyclic radicals containing only nitrogen atoms as ring hetero atom

19/044 . Pyrrole radicals

19/048 . Pyridine radicals

19/052 . Imidazole radicals

19/056 . Triazole or tetrazole radicals

19/06 . Pyrimidine radicals

19/067 . with ribosyl as the saccharide radical

19/073 . with 2-deoxyribosyl as the saccharide radical

19/09 . with arabinosyl as the saccharide radical

19/10 . with the saccharide radical esterified by phosphoric or polyphosphoric acids

19/11 . containing cyclic phosphate

19/12 . Triazine radicals

19/14 . Pyrrolo-pyrimidine radicals

19/16 . Purine radicals

19/167 . with ribosyl as the saccharide radical

19/173 . with 2-deoxyribosyl as the saccharide radical

19/19 . with arabinosyl as the saccharide radical

19/20 . with the saccharide radical esterified by phosphoric or polyphosphoric acids

19/207 . the phosphoric or polyphosphoric acids being esterified by a further hydroxylic compound, e.g. flavine adenine dinucleotide or nicotinamide-adenine dinucleotide

19/213 . containing cyclic phosphate

19/22 . Pteridine radicals

19/23 . Heterocyclic radicals containing two or more heterocyclic rings condensed among themselves or condensed with a common carbocyclic ring system, not provided for in groups C07H 19/14 - C07H 19/22

19/24 . Heterocyclic radicals containing oxygen or sulfur as ring hetero atom

21/00 Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids

21/02 . with ribosyl as saccharide radical

Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B_{12} (esters with inorganic acids C07H 11/00; metal salts, see parent compounds)

Subject matter not provided for in other groups of this subclass