CPC COOPERATIVE PATENT CLASSIFICATION ### H ELECTRICITY (NOTE omitted) ### H02 GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER # H02P CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS ### **NOTES** - 1. This subclass <u>covers</u> arrangements for starting, regulating, electronically commutating, braking, or otherwise controlling motors, generators, dynamo-electric converters, clutches, brakes, gears, transformers, reactors or choke coils, of the types classified in the relevant subclasses, e.g. <u>H01F</u>, <u>H02K</u>. - 2. This subclass <u>does not cover</u> similar arrangements for the apparatus of the types classified in subclass <u>H02N</u>, which arrangements are covered by that subclass. - 3. In this subclass, it is desirable to add the indexing codes of groups H02P 2101/00 and H02P 2103/00 #### WARNING operated by the motor In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme. | 1/00 | Arrangements for starting electric motors or | 1/16 | for starting dynamo-electric motors or dynamo- | |-------|--|-------|--| | 1,00 | dynamo-electric converters (starting of synchronous | 1/10 | electric converters | | | motors with electronic commutators H02P 6/20, | 1/163 | • • {for starting an individual reluctance motor} | | | H02P 6/22; starting dynamo-electric motors rotating | 1/166 | • • {Driving load with high inertia} | | | step by step H02P 8/04; vector control H02P 21/00) | 1/18 | • • for starting an individual DC motor | | | NOTE | 1/20 | by progressive reduction of resistance in series | | | | 1/20 | with armature winding | | | {Group H02P 1/029 takes precedence over groups | 1/22 | in either direction of rotation | | | <u>H02P 1/26</u> - <u>H02P 1/54</u> .} | 1/24 | for starting an individual AC commutator | | 1/02 | • Details {of starting control} | | motor (starting of AC/DC commutator | | 1/021 | • • {Protection against "no voltage condition"} | | motors <u>H02P 1/18</u>) | | 1/022 | • • {Security devices, e.g. correct phase sequencing} | 1/26 | for starting an individual polyphase induction | | 1/023 | • • {Protection against sparking of contacts or | | motor | | 1,025 | sticking together} | 1/265 | • • • {Means for starting or running a triphase motor | | 1/024 | • • • {Protection against simultaneous starting by | | on a single phase supply} | | 1,02. | two starting devices} | 1/28 | by progressive increase of voltage applied to | | 1/025 | • • • {Protection against starting if starting resistor is | | primary circuit of motor | | | not at zero position} | 1/30 | • • • by progressive increase of frequency of supply | | 1/026 | • • {Means for delayed starting} | | to primary circuit of motor | | 1/027 | • • {Special design of starting resistor} | 1/32 | • • by star/delta switching | | 1/028 | • • {wherein the motor voltage is increased at low | 1/34 | • • • by progressive reduction of impedance in | | | speed, to start or restart high inertia loads} | | secondary circuit | | 1/029 | • • {Restarting, e.g. after power failure} | 1/36 | • • • the impedance being a liquid resistance | | 1/04 | Means for controlling progress of starting | 1/38 | by pole-changing | | 1/01 | sequence in dependence upon time or upon | 1/40 | in either direction of rotation | | | current, speed, or other motor parameter | 1/42 | for starting an individual single-phase induction | | 1/06 | Manually-operated multi-position starters | | motor {(<u>H02P 27/04</u> takes precedence)} | | 1/08 | Manually-operated on/off switch controlling | 1/423 | • • • {by using means to limit the current in the main | | 1,00 | power-operated multi-position switch or | | winding} | | | impedances for starting a motor | 1/426 | • • • {by using a specially adapted frequency | | 1/10 | Manually-operated on/off switch controlling | | converter} | | | relays or contactors operating sequentially for | 1/44 | by phase-splitting with a capacitor | | | starting a motor | 1/445 | {by using additional capacitors switched at | | 1/12 | Switching devices centrifugally operated by the | | start up} | | | motor | 1/46 | for starting an individual synchronous motor | | 1/14 | Pressure-sensitive resistors centrifugally | | $\{(\underline{\text{H02P }27/04} \text{ takes precedence})\}$ | | 1/465 | • • { for starting an individual single-phase synchronous motor} | 5/56 | • • • Speed and position comparison between the motors by electrical means | |-----------------------|---|----------------------------------|--| | 1/48 | by pole-changing | 5/60 | • controlling combinations of DC and AC dynamo-
electric motors (<u>H02P 5/46</u> takes precedence) | | 1/50 | • • • by changing over from asynchronous to synchronous operation (<u>H02P 1/48</u> takes | 5/68 | . controlling two or more DC dynamo-electric motors | | 1/52 | precedence)by progressive increase of frequency of supply | 5/685 | (<u>H02P 5/46</u> , <u>H02P 5/60</u> take precedence) • electrically connected in series, i.e. carrying the | | | to motor | | same current | | 1/54 | • for starting two or more dynamo-electric motors | 5/69 | mechanically coupled by gearing | | 1/56 | simultaneously | 5/695
5/74 | Differential gearing controlling two or more AC dynamo-electric motors | | 1/58 | sequentially | 5/74 | (H02P 5/46, H02P 5/60 take precedence) | | 3/00 | Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters | 5/747 | mechanically coupled by gearing | | | (stopping of synchronous motors with electronic | 5/753 | Differential gearing | | | commutators <u>H02P 6/24</u> ; stopping dynamo-electric | 6/00 | Arrangements for controlling synchronous motors | | | motors rotating step by step <u>H02P 8/24</u> ; vector control <u>H02P 21/00</u>) | | or other dynamo-electric motors using electronic commutation dependent on the rotor position; | | 3/02 | • Details {of stopping control} | | Electronic commutators therefor (vector control | | 3/025 | • • {holding the rotor in a fixed position after | | H02P 21/00) | | 2/04 | deceleration} | | NOTE | | 3/04 | Means for stopping or slowing by a separate
brake, e.g. friction brake or eddy-current brake | | Group H02P 6/26 takes precedence over | | 3/06 | • for stopping or slowing an individual dynamo- | | groups <u>H02P 6/04</u> – <u>H02P 6/24</u> and <u>H02P 6/28</u> – | | | electric motor or dynamo-electric converter | | <u>H02P 6/34</u> | | 3/065 | • • {for stopping or slowing a reluctance motor} | 6/005 | • {Arrangements for controlling doubly fed motors} | | 3/08 | • for stopping or slowing a DC motor | 6/006 | • {Controlling linear motors} | | 3/10 | by reversal of supply connections | 6/007 | • {wherein the position is detected using the ripple of | | 3/12
3/14 | by short-circuit or resistive braking by regenerative braking | 6/0.4 | the current caused by the commutation} | | 3/14 | by regenerative traking by combined electrical and mechanical braking | 6/04 | Arrangements for controlling or regulating the
speed or torque of more than one motor (H02P 6/10 | | 3/18 | for stopping or slowing an AC motor | | takes precedence) | | 3/20 | by reversal of phase sequence of connections to | 2006/045 | • • {Control of current} | | | the motor | 6/06 | • Arrangements for speed regulation of a single motor | | 3/22 | by short-circuit or resistive braking | | wherein the motor speed is measured and compared | | 3/24
3/26 | by applying DC to the motor by combined electrical and mechanical braking | | with a given physical value so as to adjust the motor speed | | | • | 6/08 | Arrangements for controlling the speed or torque | | 4/00 | Arrangements specially adapted for regulating or | | of a single motor (<u>H02P 6/10</u> , <u>H02P 6/28</u> take | | | controlling the speed or torque of electric motors
that can be connected to two or more different | | precedence) | | | electric power supplies (vector control H02P 21/00) | 6/085 | • {in a bridge configuration} | | 5/00 | Arrangements specially adapted for regulating | 6/10 | Arrangements for controlling torque ripple, e.g.
providing reduced torque ripple | | 5/00 | or controlling the speed or torque of two or | 6/12 | Monitoring commutation; Providing indication of | | | more electric motors (H02P 6/04, H02P 8/40 take | | commutation failure | | | precedence) | 6/14 | Electronic commutators | | 5/46 | for speed regulation of two or more dynamo-electric
motors in relation to one another | 6/15 | . Controlling commutation time | | 5/48 | by comparing mechanical values representing the | 6/153 | • (wherein the commutation is advanced from position signals phase in function of the speed) | | 3/40 | speeds | 6/157 | • • • {wherein the commutation is function of | | 5/485 | using differential movement of the two motors, | | electro-magnetic force [EMF]} | | 5/40 | e.g. using differential gearboxes | 6/16 | Circuit arrangements for detecting position | | 5/49 | by intermittently closing or opening
electrical | 6/17 | and for generating speed information | | | | | | | 5/50 | contacts by comparing electrical values representing the | 6/18
6/181 | without separate position detecting elements {using different methods depending on the | | | contacts • by comparing electrical values representing the speeds | 6/181 | • • • { using different methods depending on the speed } | | 5/50
5/505 | contacts by comparing electrical values representing the speeds using equalising lines, e.g. rotor and stator lines | 6/181
6/182 | { using different methods depending on the speed } using back-emf in windings | | 5/505 | contacts by comparing electrical values representing the speeds using equalising lines, e.g. rotor and stator lines of first and second motors | 6/181
6/182
6/183 | {using different methods depending on the speed} using back-emf in windings {using an injected high frequency signal} | | | contacts by comparing electrical values representing the speeds using equalising lines, e.g. rotor and stator lines | 6/181
6/182 | { using different methods depending on the speed } using back-emf in windings | | 5/505
5/51
5/52 | contacts by comparing electrical values representing the speeds using equalising lines, e.g. rotor and stator lines of first and second motors Direct ratio control additionally providing control of relative angular displacement | 6/181
6/182
6/183 | {using different methods depending on the speed} using back-emf in windings {using an injected high frequency signal} using inductance sensing, e.g. pulse excitation {using difference of inductance or reluctance | | 5/505
5/51 | contacts • by comparing electrical values representing the speeds • using equalising lines, e.g. rotor and stator lines of first and second motors • Direct ratio control • additionally providing control of relative angular | 6/181
6/182
6/183
6/185 | {using different methods depending on the speed} using back-emf in windings {using an injected high frequency signal} using inductance sensing, e.g. pulse excitation | | 6/188 | • • • {using the voltage difference between the windings (H02P 6/182 takes precedence)} | 7/281 | the DC motor being operated in four quadrants | |-----------------|---|--------|---| | 6/20 | Arrangements for starting (<u>H02P 6/08</u> takes precedence) | | <u>NOTE</u> | | 6/21 | Open loop start | | Group H02P 7/281 takes precedence | | 6/22 | in a selected direction of rotation | | over groups <u>H02P 7/282</u> – <u>H02P 7/298</u> . | | 6/24 | Arrangements for stopping | 7/2015 | | | 6/26 | Arrangements for controlling single phase motors | 7/2815 | • • • • • { whereby the speed is regulated | | 6/28 | Arrangements for controlling current (<u>H02P 6/10</u> takes precedence) | | by measuring the motor speed and
comparing it with a given physical
value} | | 6/30 | Arrangements for controlling the direction of | 7/282 | controlling field supply only | | - /0.0 | rotation (<u>H02P 6/22</u> takes precedence) | 7/2825 | • • • • • {whereby the speed is regulated | | 6/32 | Arrangements for controlling wound field motors, e.g. motors with exciter coils | | by measuring the motor speed and | | 6/34 | Modelling or simulation for control purposes | | comparing it with a given physical value} | | | | 7/285 | controlling armature supply only | | 7/00 | Arrangements for regulating or controlling the | 7/2855 | • • • • • • • • • • • • • • • • • • • | | 5 /000 4 | speed or torque of electric DC motors | | by measuring the motor speed and | | 7/0094 | {wherein the position is detected using the ripple of
the current caused by the commutator} | | comparing it with a given physical | | 7/02 | • the DC motors being of the linear type | | value} | | 7/025 | • the DC motors being of the moving coil type, e.g. | 7/288 | using variable impedance | | 1/023 | voice coil motors | 7/2885 | • • • • • {whereby the speed is regulated | | 7/03 | for controlling the direction of rotation of DC motors | | by measuring the motor speed and
comparing it with a given physical
value} | | 7/04 | • • {by means of a H-bridge circuit} | 7/29 | using pulse modulation | | 7/05 | • • {by means of electronic switching} | 7/291 | with on-off control between two set | | 7/06 | for regulating or controlling an individual DC | 77271 | points, e.g. controlling by hysteresis | | | dynamo-electric motor by varying field or armature
current | 7/2913 | • • • • • {whereby the speed is regulated | | 7/063 | • {using centrifugal devices, e.g. switch, resistor} | | by measuring the motor speed and | | 7/066 | • (using a periodic interrupter, e.g. Tirrill | | comparing it with a given physical | | 77000 | regulator} | 7/292 | value} | | 7/08 | by manual control without auxiliary power | | using static converters, e.g. AC to DC | | 7/10 | of motor field only | 7/293 | using phase control (<u>H02P 7/295</u> takes precedence) | | 7/12 | Switching field from series to shunt excitation or vice versa | 7/295 | of the kind having one thyristor or the like in series with the power supply | | 7/14 | of voltage applied to the armature with or | | and the motor | | | without control of field | 7/298 | controlling armature and field supplies | | 7/18 | by master control with auxiliary power | 7/2985 | • • • • {whereby the speed is regulated | | 7/20 | controlling motor circuit by means of relays | | by measuring the motor speed and comparing it with a given physical | | 7/22 | (<u>H02P 7/24</u> , <u>H02P 7/30</u> take precedence) | 7/20 | value} | | 7/22 | using multi-position switch, e.g. drum,
controlling motor circuit by means of pilot- | 7/30 | using magnetic devices with controllable degree of saturation, i.e. transductors | | | motor-operated multi-position switch or pilot- | 7/205 | • • • { whereby the speed is regulated by | | | motor-operated variable resistance (H02P 7/24, | 7/305 | measuring the motor speed and comparing it | | | H02P 7/30 take precedence) | | with a given physical value} | | 7/24 | using discharge tubes or semiconductor devices | 7/32 | • • • using armature-reaction-excited machines, e.g. | | 7/245 | • • • • {whereby the speed is regulated by | 1132 | metadyne, amplidyne, rototrol | | | measuring the motor speed and comparing it | 7/325 | • • • {whereby the speed is regulated by | | | with a given physical value} | | measuring the motor speed and comparing it | | 7/26 | using discharge tubes | | with a given physical value} | | 7/265 | • • • • { whereby the speed is regulated by | 7/34 | using Ward-Leonard arrangements | | | measuring the motor speed and comparing | 7/343 | in which both generator and motor fields are | | | it with a given physical value} | | controlled | | 7/28 | using semiconductor devices | 7/347 | in which only the generator field is | | 7/2805 | • • • • { whereby the speed is regulated by | | controlled | | | measuring the motor speed and comparing it with a given physical value} | 7/348 | {for changing between series and parallel connections of motors} | | | 6 · · · · · · · · · · · · · · · · · · · | 0/00 | | | | | 8/00 | Arrangements for controlling dynamo-electric motors rotating step by step | | | | 8/005 | • {of linear motors} | | 8/02 | • specially adapted for single-phase or bi-pole stepper | 9/12 | • • for demagnetising; for reducing effects of | |--------------|---|--------------------------|---| | | motors, e.g. watch-motors, clock-motors NOTE | 9/123 | remanence; for preventing pole reversal • • • {for demagnetising; for reducing effects of | | | {Groups <u>H02P 8/005</u> and <u>H02P 8/02</u> take | 0/106 | remanence} | | | precedence over groups <u>H02P 8/04</u> - <u>H02P 8/42</u> } | 9/126 | • • • {for preventing pole reversal} | | | | 9/14 | • by variation of field (<u>H02P 9/08</u> , <u>H02P 9/10</u> take precedence) | | 8/04 | Arrangements for starting | 9/16 | due to variation of ohmic resistance in field | | 8/06 | in selected direction of rotation | <i>)/</i> 10 | circuit, using resistances switched in or out of | | 8/08 | . Determining position before starting | | circuit step by step | | 8/10 | Shaping pulses for starting; Boosting current during starting | 9/18 | the switching being caused by a servomotor,
measuring instrument, or relay | | 8/12 | Control or stabilisation of current | 9/20 | due to variation of continuously-variable ohmic | | 8/14 | Arrangements for controlling speed or speed and
torque (<u>H02P 8/12</u>, <u>H02P 8/22</u> take precedence) | | resistance | | 8/16 | Reducing energy dissipated or supplied | 9/22 | comprising carbon pile resistance | | 8/165 | • • • {using two level supply voltage} | 9/24 | due to variation of make-to-break ratio of | | 8/18 | Shaping of pulses, e.g. to reduce torque | | intermittently-operating contacts, e.g. using Tirrill | | 0/10 | ripple {(Reducing overshoot <u>H02P 8/32</u> takes | 0.10.5 | regulator | | | precedence)} | 9/26 | using
discharge tubes or semiconductor devices
(H02P 9/34 takes precedence) | | 8/20 | characterised by bidirectional operation | 9/28 | using discharge tubes | | 8/22 | Control of step size; Intermediate stepping, e.g. | 9/30 | using discharge tubes using semiconductor devices | | | microstepping | 9/302 | {Brushless excitation} | | 8/24 | Arrangements for stopping (<u>H02P 8/32</u> takes | 9/305 | • • • { Controlling voltage (H02P 9/302 takes | | | precedence) | 7/303 | precedence)} | | 8/26 | Memorising final pulse when stopping | 9/307 | • • • • {more than one voltage output} | | 8/28 | . Disconnecting power source when stopping | 9/32 | using magnetic devices with controllable degree | | 8/30 | Holding position when stopped | | of saturation (<u>H02P 9/34</u> takes precedence) | | 8/32 | Reducing overshoot or oscillation, e.g. damping | 9/34 | using magnetic devices with controllable degree | | 8/34
8/36 | • Monitoring operation (<u>H02P 8/36</u> takes precedence) | | of saturation in combination with controlled | | | Protection against faults, e.g. against overheating or
step-out; Indicating faults | | discharge tube or controlled semiconductor device | | 8/38 | • the fault being step-out | 9/36 | using armature-reaction-excited machines | | 8/40 | Special adaptations for controlling two or more stepping motors | 9/38 | Self-excitation by current derived from rectification of both output voltage and output | | 8/42 | characterised by non-stepper motors being operated | | current of generator | | | step by step | 9/40 | by variation of reluctance of magnetic circuit of | | 9/00 | Arrangements for controlling electric generators | | generator | | | for the purpose of obtaining a desired output | 9/42 | to obtain desired frequency without varying speed
of the generator | | 9/006 | • {Means for protecting the generator by using | 9/44 | Control of frequency and voltage in predetermined | | | control (control effected upon generator excitation | <i>)</i> / 11 | relation, e.g. constant ratio | | | circuit to reduce harmful effects of overloads or transients H02P 9/10)} | 9/46 | • Control of asynchronous generator by variation of | | 9/007 | • {Control circuits for doubly fed generators} | | capacitor | | 9/007 | • {wherein the generator is controlled by the | 9/48 | Arrangements for obtaining a constant output value | | 2/000 | requirements of the prime mover} | | at varying speed of the generator, e.g. on vehicle | | 9/009 | • {Circuit arrangements for detecting rotor position} | | (<u>H02P 9/04</u> - <u>H02P 9/46</u> take precedence) | | 9/02 | • Details {of the control} | 11/00 | Arrangements for controlling dynamo-electric | | 9/04 | Control effected upon non-electric prime mover | | converters | | | and dependent upon electric output value of the generator | 11/04 | for controlling dynamo-electric converters having a
DC output | | 9/06 | Control effected upon clutch or other mechanical | 11/06 | • for controlling dynamo-electric converters having | | | power transmission means and dependent upon electric output value of the generator | 11,00 | an AC output | | 9/08 | Control of generator circuit during starting or | 13/00 | Arrangements for controlling transformers, | | 2700 | stopping of driving means, e.g. for initiating excitation | | reactors or choke coils, for the purpose of obtaining a desired output | | 9/10 | Control effected upon generator excitation circuit | 13/06 | by tap-changing; by rearranging interconnections of | | <i>)</i> /10 | to reduce harmful effects of overloads or transients, | | windings | | | e.g. sudden application of load, sudden removal of | 13/08 | by sliding current collector along winding | | | load, sudden change of load | 13/10 | • by moving core, coil winding, or shield, e.g. by | | 9/102 | • • {for limiting effects of transients} | | induction regulator | | 9/105 | • • {for increasing the stability} | 13/12 | by varying magnetic bias | | 9/107 | • • {for limiting effects of overloads} | | | | | | | | | 4 = 100 | | 21/24 | | |---------|---|---------|---| | 15/00 | Arrangements for controlling dynamo-electric | 21/24 | • Vector control not involving the use of rotor | | 1.7./00 | brakes or clutches (vector control H02P 21/00) | 21/26 | position or rotor speed sensors | | 15/02 | Conjoint control of brakes and clutches | 21/26 | Rotor flux based control | | 17/00 | Arrangements for controlling dynamo-electric | 21/28 | Stator flux based control | | 17700 | gears (vector control H02P 21/00) | 21/30 | Direct torque control [DTC] or field acceleration method [FAM] | | 21/00 | Arrangements or methods for the control of | 21/32 | Determining the initial rotor position | | | electric machines by vector control, e.g. by control | | (H02P 21/34 takes precedence) | | | of field orientation | 21/34 | Arrangements for starting | | | NOTES | 21/36 | • Arrangements for braking or slowing; Four quadrant | | | NOTES | 21,00 | control | | | 1. When classifying in this group, classification | 21/50 | • {Vector control arrangements or methods not | | | should also be made in group H02P 25/00 when | 21/30 | otherwise provided for in H02P 21/00-H02P 21/36 | | | the method of control is characterised by the kind | | 1021 21/00 1101 III 11021 21/00 | | | of motor being controlled. | 23/00 | Arrangements or methods for the control of AC | | | 2. When classifying in this group, classification | | motors characterised by a control method other | | | should also be made in group H02P 27/00 when | | than vector control | | | the method of control is characterised by the kind | | NOTE | | | of supply voltage of the motor being controlled. | | | | 21/0002 | | | When classifying in this group, subject matter also | | 21/0003 | • {Control strategies in general, e.g. linear type, e.g. | | relating to groups <u>H02P 21/00</u> , <u>H02P 25/00</u> or | | | P, PI, PID, using robust control} | | <u>H02P 27/00</u> is further classified in those groups | | 21/0007 | • • {using sliding mode control} | | whenever appropriate. | | 21/001 | • • {using fuzzy control} | 23/0004 | • {Control strategies in general, e.g. linear type, e.g. | | 21/0014 | • • {using neural networks} | 25/0004 | P, PI, PID, using robust control } | | 21/0017 | • • {Model reference adaptation, e.g. MRAS | 23/0009 | • • {using sliding mode control} | | | or MRAC, useful for control or parameter | 23/0013 | • {using fuzzy control} | | | estimation} | 23/0013 | • {using nuzzy control}• {using neural networks} | | 21/0021 | • • {using different modes of control depending on a | 23/0018 | {using neural networks} {Model reference adaptation, e.g. MRAS | | | parameter, e.g. the speed} | 23/0022 | or MRAC, useful for control or parameter | | 21/0025 | • • {implementing a off line learning phase to | | estimation} | | | determine and store useful data for on-line | 23/0027 | | | | control} | 23/0021 | {using different modes of control depending on a
parameter, e.g. the speed} | | 21/0085 | • {specially adapted for high speeds, e.g. above | 23/0031 | • • {implementing a off line learning phase to | | | nominal speed} | 23/0031 | determine and store useful data for on-line | | 21/0089 | • • {using field weakening} | | control} | | 21/02 | specially adapted for optimising the efficiency at | 23/0077 | • {Characterised by the use of a particular software | | | low load | 23/0011 | algorithm} | | 21/04 | specially adapted for very low speeds | 23/0086 | • {specially adapted for high speeds, e.g. above | | 21/05 | specially adapted for damping motor oscillations, | 23/0000 | nominal speed} | | | e.g. for reducing hunting | 23/009 | • • {using field weakening} | | 21/06 | Rotor flux based control involving the use of rotor | 23/02 | specially adapted for optimising the efficiency at | | | position or rotor speed sensors | 23/02 | low load | | 21/08 | Indirect field-oriented control; Rotor flux feed- | 23/03 | specially adapted for very low speeds | | | forward control | 23/04 | specially adapted for damping motor oscillations, | | 21/09 | Field phase angle calculation based on rotor | 23/04 | e.g. for reducing hunting | | | voltage equation by adding slip frequency and | 23/06 | Controlling the motor in four quadrants | | | speed proportional frequency | 23/07 | Polyphase or monophase asynchronous induction | | 21/10 | Direct field-oriented control; Rotor flux feed-back | 23/07 | motors | | | control | 23/08 | Controlling based on slip frequency, e.g. adding slip | | 21/12 | Stator flux based control involving the use of rotor | 23/00 | frequency and speed proportional frequency | | | position or rotor speed sensors | 23/10 | Controlling by adding a DC current | | 21/13 | Observer control, e.g. using Luenberger observers | 23/10 | Observer control, e.g. using Luenberger observers | | | or Kalman filters | 23/12 | or Kalman filters | | 21/14 | • Estimation or adaptation of machine parameters, | 23/14 | | | | e.g. flux, current or voltage | 23/14 | Estimation or adaptation of motor parameters, e.g.
rotor time constant, flux, speed, current or voltage | | 21/141 | • • {Flux estimation} | 23/16 | Controlling the angular speed of one shaft | | 21/143 | • • {Inertia or moment of inertia estimation} | 23/10 | (H02P 23/18 takes precedence) | | 21/16 | Estimation of constants,
e.g. the rotor time | 23/18 | • Controlling the angular speed together with angular | | | constant | 23/10 | position or phase | | 21/18 | Estimation of position or speed | 23/183 | - | | 21/20 | Estimation of torque | 23/183 | • { of one shaft without controlling the prime mover} | | 21/22 | . Current control, e.g. using a current control loop | 23/186 | • • {of one shaft by controlling the prime mover} | | | | | | | | | 23/20 | Controlling the acceleration or deceleration | | 23/22 | Controlling the speed digitally using a reference oscillator, a speed proportional pulse rate feedback | 25/18 | • . with arrangements for switching the windings, e.g. with mechanical switches or relays | |----------------|--|------------------|---| | 23/24 | and a digital comparatorControlling the direction, e.g. clockwise or | 25/182 | • • • {whereby the speed is regulated by using centrifucal devices, e.g. switch, resistor} | | | counterclockwise | 25/184 | • • • {wherein the motor speed is changed by | | 23/26 | Power factor control [PFC] | | switching from a delta to a star, e.g. wye, | | 23/28 | Controlling the motor by varying the switching | | connection of its windings, or vice versa} | | | frequency of switches connected to a DC supply and | 25/186 | • • • {whereby the speed is regulated by using | | 22/20 | the motor phases | | a periodic interrupter (<u>H02P 25/30</u> takes | | 23/30 | Direct torque control [DTC] or field acceleration
method [FAM] | 25/188 | precedence)}• • {wherein the motor windings are switched from | | | method [PAW] | 23/100 | series to parallel or <u>vice versa</u> to control speed | | 25/00 | Arrangements or methods for the control of AC | | or torque} | | | motors characterised by the kind of AC motor or | 25/20 | for pole-changing | | | by structural details | 25/22 | Multiple windings; Windings for more than three | | | NOTE | | phases | | | When classifying in this group, subject matter also | 25/24 | Variable impedance in stator or rotor circuit | | | relating to groups <u>H02P 21/00</u> , <u>H02P 23/00</u> or | 25/26 | with arrangements for controlling secondary | | | H02P 27/00 is further classified in those groups | | impedance | | | whenever appropriate. | 25/28 | using magnetic devices with controllable degree | | 25/02 | characterised by the kind of motor | 25/20 | of saturation, e.g. transductors | | 25/022 | Characterised by the kind of motor Synchronous motors (<u>H02P 25/064</u> takes | 25/30 | • the motor being controlled by a control effected | | 23/022 | precedence) | 25/32 | upon an AC generator supplying it using discharge tubes | | 25/024 | controlled by supply frequency | 25/325 | using discharge tubes • { whereby the speed is regulated by measuring | | 25/026 | thereby detecting the rotor position | 23/323 | the motor speed and comparing it with a given | | 25/028 | with four quadrant control | | physical value} | | 25/03 | with brushless excitation | •= 10.0 | | | 25/032 | Reciprocating, oscillating or vibrating motors | 27/00 | Arrangements or methods for the control of | | 25/034 | Voice coil motors (voice coil motors driven by | | AC motors characterised by the kind of supply voltage (of two or more motors <u>H02P 5/00</u> ; of | | | DC <u>H02P 7/025</u>) | | synchronous motors with electronic commutators | | 25/04 | Single phase motors, e.g. capacitor motors | | H02P 6/00; of DC motors H02P 7/00; of stepping | | 25/06 | Linear motors | | motors <u>H02P 8/00</u>) | | 25/062 | of the induction type | | NOTE | | 25/064 | • • • of the synchronous type | | | | 25/066 | • • • of the stepping type | | When classifying in this group, subject matter also | | 25/08 | . Reluctance motors | | relating to groups <u>H02P 21/00</u> , <u>H02P 23/00</u> or <u>H02P 25/00</u> is further classified in those groups | | 25/0805 | • {whereby the speed is regulated by measuring
the motor speed and comparing it with a given | | whenever appropriate | | | physical value} | | | | 25/083 | Arrangements for increasing the switching | 27/02 | using supply voltage with constant frequency and | | 23/003 | speed from one coil to the next one | | variable amplitude | | 25/086 | Commutation | 27/024 | using AC supply for only the rotor circuit or only
the stator circuit | | 25/089 | Sensorless control (direct torque control | 27/026 | • • {whereby the speed is regulated by measuring | | | <u>H02P 23/30</u>) | 27/020 | the motor speed and comparing it with a given | | 25/092 | Converters specially adapted for controlling | | physical value} | | | reluctance motors | 27/04 | using variable-frequency supply voltage, e.g. | | 25/0925 | • • • {wherein the converter comprises only one | | inverter or converter supply voltage | | | switch per phase} | 27/045 | • • {whereby the speed is regulated by measuring | | 25/098 | • • Arrangements for reducing torque ripple | | the motor speed and comparing it with a given | | 25/10 | • Commutator motors, e.g. repulsion motors | | physical value} | | 25/102 | • • • {Repulsion motors} | 27/047 | • • {V/F converter, wherein the voltage is controlled | | 25/105 | • • • {Four quadrant control} | 2 - 10 10 | proportionally with the frequency} | | 25/107 | {Polyphase or monophase commutator motors} with shiftable brushes | 27/048 | . using AC supply for only the rotor circuit or only | | 25/12
25/14 | with shiftable brushes Universal motors (<u>H02P 25/12</u> takes | 27/05 | the stator circuit using AC supply for both the rotor and the stator | | | precedence) | 21/05 | circuits, the frequency of supply to at least one | | 25/145 | • • • { whereby the speed is regulated by | 2 = 10 = | circuit being variable | | | measuring the motor speed and comparing it with a given physical value, speed feedback} | 27/06 | . using DC to AC converters or inverters | | 25/16 | characterised by the circuit arrangement or by the | 27/08 | (<u>H02P 27/05</u> takes precedence) • • with pulse width modulation | | 23/10 | kind of wiring | 41/08 | • • • with pulse with inounation | | 27/085 | • • • {wherein the PWM mode is adapted on the | 29/664 | • • • {the rotor having windings} | |---------|---|--------------|---| | | running conditions of the motor, e.g. the | 29/666 | • • • {by rotor current detection} | | | switching frequency} | 29/67 | • • {Controlling or determining the motor | | 27/10 | using bang-bang controllers | | temperature by back electromotive force [back- | | 27/12 | pulsing by guiding the flux vector, current | | EMF] evaluation} | | | vector or voltage vector on a circle or a | 29/68 | based on the temperature of a drive component or | | | closed curve, e.g. for direct torque control | | a semiconductor component | | 27/14 | with three or more levels of voltage | 29/685 | {compensating for Hall sensor temperature | | 27/16 | using AC to AC converters without intermediate | | non-linearity} | | | conversion to DC (<u>H02P 27/05</u> takes precedence) | | | | 27/18 | varying the frequency by omitting half waves | 31/00 | Arrangements for regulating or controlling | | | | | electric motors not provided for in groups | | 29/00 | Arrangements for regulating or controlling electric | | <u>H02P 1/00</u> - <u>H02P 5/00, H02P 7/00</u> or | | | motors, appropriate for both AC and DC motors | | <u>H02P 21/00</u> - <u>H02P 29/00</u> | | | (arrangements for starting electric motors <u>H02P 1/00</u> ; | Indoving col | neme associated with groups relating to the | | | arrangements for stopping or slowing electric motors | | ts for controlling electric generators | | | H02P 3/00; control of motors that can be connected | arrangemen | us for controlling electric generators | | | to two or more different electric power supplies | 2101/00 | Special adaptation of control arrangements for | | | H02P 4/00; regulating or controlling the speed or | | generators | | | torque of two or more electric motors <u>H02P 5/00</u> ; | 2101/10 | for water-driven turbines | | 20/0016 | vector control <u>H02P 21/00</u>) | 2101/15 | • for wind-driven turbines | | 29/0016 | • {Control of angular speed of one shaft without | 2101/20 | • for steam-driven turbines | | | controlling the prime mover} | 2101/25 | for combustion engines | | 29/0022 | • • {Controlling a brake between the prime mover | 2101/20 | • for aircraft | | | and the load} | 2101/35 | • for ships | | 29/0027 | • • {Controlling a clutch between the prime mover | 2101/33 | for railway vehicles | | | and the load} | | - | | 29/02 | Providing protection against overload without | 2101/45 | • for motor vehicles, e.g. car alternators | | | automatic interruption of supply (protection against | 2103/00 | Controlling arrangements characterised by the | | | faults of stepper motors <u>H02P 8/36</u>) | | type of generator | | 29/024 | . Detecting a fault condition, e.g. short circuit, | 2103/10 | of the asynchronous type | | | locked rotor, open circuit or loss of load | 2103/20 | • of the synchronous type | | 29/0241 | • • • {the fault being an overvoltage} | | 7 71 | | 29/0243 | • • • {the fault being a broken phase} | | | | 29/025 | • • • {the fault being a power interruption} | | | | 29/026 | • • • {the fault being a power fluctuation} | 2201/00 | Indexing scheme relating to controlling | | 29/027 | • • • {the fault being an over-current} | |
arrangements characterised by the converter used | | 29/028 | • • • the motor continuing operation despite the fault | 2201/01 | AC-AC converter stage controlled to provide a | | | condition, e.g. eliminating, compensating for or | | defined AC voltage | | | remedying the fault | 2201/03 | AC-DC converter stage controlled to provide a | | 29/032 | • Preventing damage to the motor, e.g. setting | | defined DC link voltage | | | individual current limits for different drive | 2201/05 | Capacitive half bridge, i.e. resonant inverter having | | | conditions | | two capacitors and two switches | | 29/04 | by means of a separate brake | 2201/07 | DC-DC step-up or step-down converter inserted | | 29/045 | • • {whereby the speed is regulated by measuring | | between the power supply and the inverter | | | the motor speed and comparing it with a given | | supplying the motor, e.g. to control voltage source | | | physical value} | | fluctuations, to vary the motor speed | | 29/10 | for preventing overspeed or under speed | 2201/09 | Boost converter, i.e. DC-DC step up converter | | 29/20 | for controlling one motor used for different | | increasing the voltage between the supply and the | | | sequential operations | | inverter driving the motor | | 29/40 | Regulating or controlling the amount of current | 2201/11 | Buck converter, i.e. DC-DC step down converter | | | drawn or delivered by the motor for controlling the | | decreasing the voltage between the supply and the | | | mechanical load | | inverter driving the motor | | 29/50 | Reduction of harmonics | 2201/13 | DC-link of current link type, e.g. typically for | | 29/60 | Controlling or determining the temperature of | | thyristor bridges, having an inductor in series with | | | the motor or of the drive (H02P 29/02 takes | 0001/27 | rectifier | | | precedence) | 2201/15 | Power factor correction [PFC] circuit generating the | | 29/62 | • • for raising the temperature of the motor | | DC link voltage for motor driving inverter | | 29/64 | Controlling or determining the temperature of the | 2203/00 | Indexing scheme relating to controlling | | | winding | | arrangements characterised by the means for | | 29/66 | • Controlling or determining the temperature of the | | detecting the position of the rotor | | | rotor | 2203/01 | Motor rotor position determination based on the | | 29/662 | • • • {the rotor having permanent magnets | | detected or calculated phase inductance, e.g. for a | | | (H02P 29/67 takes precedence)} | | Switched Reluctance Motor | | | | | | ### H02P | 2203/03 | | |--|---| | 2200,00 | • Determination of the rotor position, e.g. initial rotor | | 2203/05 | position, during standstill or low speed operation Determination of the rotor position by using two | | | different methods and/or motor models | | 2203/07 | Motor variable determination based on the ON- | | | resistance of a power switch, i.e. the voltage across | | | the switch is measured during the ON state of the | | | switch and used to determine the current in the | | | motor and to calculate the speed | | 2203/09 | Motor speed determination based on the current | | | and/or voltage without using a tachogenerator or a | | | physical encoder | | 2203/11 | Determination or estimation of the rotor position | | | or other motor parameters based on the analysis of | | | high-frequency signals | | 2205/00 | Indexing scheme relating to controlling | | 2205/00 | Indexing scheme relating to controlling arrangements characterised by the control loops | | 2205/01 | Current loop, i.e. comparison of the motor current | | 2205/01 | with a current reference | | 2205/02 | | | 2205/03 | Power loop, i.e. comparison of the motor power with a power reference | | 2205/05 | • | | 2205/05 | Torque loop, i.e. comparison of the motor torque | | 2205/07 | with a torque reference | | 2205/07 | • Speed loop, i.e. comparison of the motor speed with | | | a speed reference | | 2207/00 | Indexing scheme relating to controlling | | | arrangements characterised by the type of motor | | 2207/01 | Asynchronous machines | | 2207/03 | • Double rotor motors or generators, i.e. | | | electromagnetic transmissions having double | | | rotor with motor and generator functions, e.g. for | | | electrical variable transmission | | 2207/05 | Synchronous machines, e.g. with permanent | | | magnets or DC excitation | | 2207/055 | Surface mounted magnet motors | | 2207/07 | Doubly fed machines receiving two supplies both | | | on the stator only wherein the power supply is fed | | | to different sets of stator windings or to rotor and | | | stator windings | | 2207/073 | • • wherein only one converter is used, the other | | | windings being supplied without converter, e.g. | | | doubly-fed induction machines | | 2207/076 | • • wherein both supplies are made via converters: | | | especially doubly-fed induction machines; e.g. for | | | starting | | | C | | 2209/00 | Indexing scheme relating to controlling | | 2209/00 | Indexing scheme relating to controlling arrangements characterised by the waveform of | | 2209/00 | arrangements characterised by the waveform of | | | arrangements characterised by the waveform of the supplied voltage or current | | 2209/00 2209/01 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power | | 2209/01 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply | | | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the | | 2209/01 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a | | 2209/01
2209/03 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point | | 2209/01 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase | | 2209/01
2209/03
2209/05 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply | | 2209/01
2209/03 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply Trapezoidal waveform | | 2209/01
2209/03
2209/05
2209/07 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply | | 2209/01
2209/03
2209/05
2209/07 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply Trapezoidal waveform PWM with fixed limited number of pulses per period | | 2209/01
2209/03
2209/05
2209/07
2209/09
2209/095 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply Trapezoidal waveform PWM with fixed limited number of pulses per | | 2209/01
2209/03
2209/05
2209/07
2209/09
2209/095
2209/11 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply
Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply Trapezoidal waveform PWM with fixed limited number of pulses per period One pulse per half period Sinusoidal waveform | | 2209/01
2209/03
2209/05
2209/07
2209/09
2209/095 | arrangements characterised by the waveform of the supplied voltage or current Motors with neutral point connected to the power supply Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point Polyphase motors supplied from a single-phase power supply or a DC power supply Trapezoidal waveform PWM with fixed limited number of pulses per period One pulse per half period |