CPC - COOPERATIVE PATENT CLASSIFICATION

H ELECTRICITY

H02 GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER

H02P CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS

NOTES

1. This subclass covers arrangements for starting, regulating, electronically commutating, braking, or otherwise controlling motors, generators, dynamo-electric converters, clutches, brakes, gears, transformers, reactors or choke coils, of the types classified in the relevant subclasses, e.g. H01F, H02K.
2. This subclass does not cover similar arrangements for the apparatus of the types classified in subclass H02N, which arrangements are covered by that subclass.
3. In this subclass, the following terms or expressions are used with the meanings indicated:
 - “control” means influencing a variable in any way, e.g. changing its direction or its value (including changing it to or from zero), maintaining it constant or limiting its range of variation;
 - “regulation” means maintaining a variable at a desired value, or within a desired range of values, by comparison of the actual value with the desired value.
4. In this subclass, it is desirable to add the indexing codes of groups H02P 2101/00 and H02P 2103/00

WARNING

In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/00</td>
<td>Arrangements for starting electric motors or dynamo-electric converters (starting of synchronous motors with electronic commutators except reluctance motors, H02P 6/20, H02P 6/22; starting dynamo-electric motors rotating step by step H02P 8/04; vector control H02P 21/00)</td>
</tr>
<tr>
<td>1/02</td>
<td>Details</td>
</tr>
<tr>
<td>1/01</td>
<td>. . . Protection against “no voltage condition”</td>
</tr>
<tr>
<td>1/02</td>
<td>. . . Security devices, e.g. correct phase sequencing</td>
</tr>
<tr>
<td>1/03</td>
<td>. . . Protection against sparking of contacts or sticking together</td>
</tr>
<tr>
<td>1/04</td>
<td>. . . Protection against simultaneous starting by two starting devices</td>
</tr>
<tr>
<td>1/05</td>
<td>. . . Protection against starting if starting resistor is not at zero position</td>
</tr>
<tr>
<td>1/06</td>
<td>. . . Means for delayed starting</td>
</tr>
<tr>
<td>1/07</td>
<td>. . . Special design of starting resistor</td>
</tr>
<tr>
<td>1/08</td>
<td>. . . wherein the motor voltage is increased at low speed, to start or restart high inertia loads</td>
</tr>
<tr>
<td>1/09</td>
<td>. . . Restarting, e.g. after power failure</td>
</tr>
<tr>
<td>1/10</td>
<td>. . . Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter</td>
</tr>
<tr>
<td>1/11</td>
<td>. . . Manually-operated multi-position starters</td>
</tr>
<tr>
<td>1/12</td>
<td>. . . Switching devices centrifugally operated by the motor</td>
</tr>
<tr>
<td>1/14</td>
<td>. . . Pressure-sensitive resistors centrifugally operated by the motor</td>
</tr>
<tr>
<td>1/16</td>
<td>. . . for starting dynamo-electric motors or dynamo-electric converters</td>
</tr>
<tr>
<td>1/17</td>
<td>. . . (starting of ac/dc commutator motors H02P 1/18)</td>
</tr>
<tr>
<td>1/18</td>
<td>. . . for starting an individual reluctance motor</td>
</tr>
<tr>
<td>1/19</td>
<td>. . . [Driving load with high inertia]</td>
</tr>
<tr>
<td>1/20</td>
<td>. . . by progressive reduction of resistance in series with armature winding</td>
</tr>
<tr>
<td>1/21</td>
<td>. . . in either direction of rotation</td>
</tr>
<tr>
<td>1/22</td>
<td>. . . for starting an individual ac commutator motor</td>
</tr>
<tr>
<td>1/23</td>
<td>. . . Means for starting or running a triphase motor on a single phase supply</td>
</tr>
<tr>
<td>1/24</td>
<td>. . . by progressive increase of voltage applied to primary circuit of motor</td>
</tr>
<tr>
<td>1/25</td>
<td>. . . by progressive increase of frequency of supply to primary circuit of motor</td>
</tr>
<tr>
<td>1/26</td>
<td>. . . by pole-changing</td>
</tr>
<tr>
<td>1/27</td>
<td>. . . for starting an individual polyphase induction motor</td>
</tr>
<tr>
<td>1/28</td>
<td>. . . for starting or running a triphase motor on a single phase supply</td>
</tr>
<tr>
<td>1/29</td>
<td>. . . by progressive increase of voltage applied to primary circuit of motor</td>
</tr>
<tr>
<td>1/30</td>
<td>. . . by progressive increase of frequency of supply to primary circuit of motor</td>
</tr>
<tr>
<td>1/31</td>
<td>. . . by star-delta switching</td>
</tr>
<tr>
<td>1/32</td>
<td>. . . by progressive reduction of impedance in secondary circuit</td>
</tr>
<tr>
<td>1/33</td>
<td>. . . the impedance being a liquid resistance</td>
</tr>
<tr>
<td>1/34</td>
<td>. . . by pole-changing</td>
</tr>
<tr>
<td>1/35</td>
<td>. . . for starting an individual reluctance motor</td>
</tr>
<tr>
<td>1/36</td>
<td>. . . (starting of ac/dc commutator motors H02P 1/18)</td>
</tr>
</tbody>
</table>

NOTE

Group H02P 1/029 takes precedence over groups H02P 1/26 - H02P 1/54

CPC - 2019.05
Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies (vector control H02P 21/00)

NOTE

Group H02P 6/26 takes precedence over groups H02P 6/04, H02P 6/24 and H02P 6/28 – H02P 6/34

WARNING

Group H02P 6/00 is impacted by reclassification into groups H02P 6/04, H02P 6/24 and H02P 6/28 – H02P 6/34.

Groups H02P 6/00 and H02P 6/32 should be considered in order to perform a complete search.
Arrangements for controlling or regulating the speed or torque of more than one motor (H02P 6/10 takes precedence)

WARNING

Group H02P 6/04 is impacted by reclassification into group H02P 6/10. Groups H02P 6/04 and H02P 6/10 should be considered in order to perform a complete search.

Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed

Arrangements for controlling the speed or torque of a single motor (H02P 6/10, H02P 6/28 take precedence)

WARNING

Group H02P 6/08 is impacted by reclassification into group H02P 6/10. Groups H02P 6/08 and H02P 6/10 should be considered in order to perform a complete search.

Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

WARNING

Group H02P 6/10 is incomplete pending reclassification of documents from group H02P 6/04 and group H02P 6/08. Groups H02P 6/04, H02P 6/08 and H02P 6/10 should be considered in order to perform a complete search.

Monitoring commutation; Providing indication of commutation failure

Electronic commutators

Controlling commutation time

{ wherein the commutation is advanced from position signals phase in function of the speed }

{ wherein the commutation is function of electro-magnetic force [EMF] }

Circuit arrangements for detecting position

and for generating speed information

without separate position detecting elements

{ using different methods depending on the speed }

using back-emf in windings

{ using an injected high frequency signal }

using inductance sensing, e.g. pulse excitation

{ using difference of inductance or reluctance between the phases }

{ using the star point voltage }

{ using the voltage difference between the windings (H02P 6/182 takes precedence) }

Arrangements for starting

{ in a bridge configuration }

Arrangements for controlling current (H02P 6/10 takes precedence)

Arrangements for controlling the direction of rotation (H02P 6/22 takes precedence)

Arrangements for controlling wound field motors, e.g. motors with exciter coils

WARNING

Group H02P 6/32 is incomplete pending reclassification of documents from group H02P 6/00. Groups H02P 6/00 and H02P 6/32 should be considered in order to perform a complete search.

Modelling or simulation for control purposes

Arrangements for regulating or controlling the speed or torque of electric DC motors

WARNING

Group H02P 7/00 is impacted by reclassification into groups H02P 7/02, H02P 7/025. Groups H02P 7/00, H02P 7/02, and H02P 7/025 should be considered in order to perform a complete search.

Arrangements for controlling wound field motors, rotation (H02P 6/22 takes precedence)

Arrangements for controlling or regulating an individual dc dynamo-electric motor by varying field or armature current

Switching field from series to shunt

by means of electronic switching

for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current

{ using centrifugal devices, e.g. switch, resistor }

{ using a periodic interrupter, e.g. Tirrill regulator }

by manual control without auxiliary power

of motor field only

Switching field from series to shunt excitation or vice versa
by master control with auxiliary power

using multi-position switch, e.g. drum, controlling motor circuit by means of relays (H02P 7/24, H02P 7/30 take precedence)

using multi-position switch, e.g. drum, controlling motor circuit by means of pilot-motor-operated multi-position switch or pilot-motor-operated variable resistance (H02P 7/24, H02P 7/30 take precedence)

using discharge tubes or semiconductor devices

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

using discharge tubes

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

using semiconductor devices

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

the DC motor being operated in four quadrants

NOTE

Group H02P 7/281 takes precedence over groups H02P 7/282 – H02P 7/298.

controlling field supply only

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

controlling armature supply only

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

using variable impedance

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

using pulse modulation

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

using static converters, e.g. AC to DC

[whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

controlling armature and field supply

NOTE

Groups H02P 8/005 and H02P 8/02 take precedence over groups H02P 8/04 - H02P 8/42

Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step (vector control H02P 21/00)

[of linear motors]

specially adapted for single-phase or bi-pole stepper motors, e.g. watch-motors, clock-motors

NOTE

Groups H02P 8/005 and H02P 8/02 take precedence over groups H02P 8/04 - H02P 8/42

Arrangements for stopping (H02P 8/32 takes precedence)
Arrangements for controlling electric generators for the purpose of obtaining a desired output

(Ward-Leonard arrangements H02P 7/34; vector control H02P 21/00; feeding a network by two or more generators H02P; for charging batteries H02J 7/14)

9/00 9/006 [Means for protecting the generator by using control (H02H 7/06 takes precedence; control effected upon generator excitation circuit to reduce harmful effects of overloads or transients (H02P 9/10)]

9/007 [Control circuits for doubly fed generators]

9/008 [wherein the generator is controlled by the requirements of the prime mover]

9/009 [Circuit arrangements for detecting rotor position]

9/02 Details

9/04 Control effected upon non-electric prime mover and dependent upon electric output value of the generator (effecting control of the prime mover in general, see the relevant class for such prime mover)

9/06 Control effected upon clutch or other mechanical power transmission means and dependent upon electric output value of the generator (effecting control of the power transmission means, see the relevant class for such means)

9/08 Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation

9/10 Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load

9/102 [for limiting effects of transients]

9/105 [for increasing the stability]

9/107 [for limiting effects of overloads]

9/12 for demagnetising; for reducing effects of remanence; for preventing pole reversal

9/123 [for demagnetising; for reducing effects of remanence]

9/126 [for preventing pole reversal]
Arrangements for controlling dynamo-electric brakes or clutches (controlling speed of dynamo-electric motors by means of a separate brake) H02P 29/04, vector control H02P 21/00 (see provisionally also H02K 49/00 and H02P 29/0022)

Conjoint control of brakes and clutches

Arrangements for controlling dynamo-electric gears (vector control H02P 21/00)

Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation

NOTES

1. When classifying in this group, classification should also be made in group H02P 25/00 when the method of control is characterised by the kind of motor being controlled.

2. When classifying in this group, classification should also be made in group H02P 27/00 when the method of control is characterised by the kind of supply voltage of the motor being controlled.

[Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control]
[using sliding mode control]
[using fuzzy control]
[using neural networks]
[Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation]
[using different modes of control depending on a parameter, e.g. the speed]
[implementing an off line learning phase to determine and store useful data for on-line control]
[specially adapted for high speeds, e.g. above nominal speed]
[using field weakening]
[specially adapted for optimising the efficiency at low load]
[specially adapted for very low speeds]
[specially adapted for damping motor oscillations, e.g. for reducing hunting]
[Rotor flux based control involving the use of rotor position or rotor speed sensors]
[Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency]
[Direct field-oriented control; Rotor flux feed-forward control]
[Stator flux based control involving the use of rotor position or rotor speed sensors]
[Observer control, e.g. using Luenberger observers or Kalman filters]
[Estimation or adaptation of machine parameters, e.g. flux, current or voltage]
[Flux estimation]
[Inertia or moment of inertia estimation]
[Estimation of constants, e.g. the rotor time constant]

. . . Estimation of position or speed
. . . Estimation of torque
. . . Current control, e.g. using a current control loop
. . . Vector control not involving the use of rotor position or rotor speed sensors
. . . Rotor flux based control
. . . Stator flux based control
. . . Determining the initial rotor position (H02P 21/34 takes precedence)
. . . Arrangements for starting
. . . Arrangements for braking or slowing: Four quadrant control
. . . (Vector control arrangements or methods not otherwise provided for in H02P 21/00, H02P 21/36)

Arrangements or methods for the control of AC motors characterised by a control method other than vector control

NOTE

When classifying in this group, subject matter also relating to groups H02P 21/00, H02P 25/00 or H02P 27/00 is further classified in those groups whenever appropriate.

[Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control]
[using sliding mode control]
[using fuzzy control]
[using neural networks]
[Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation]
[using different modes of control depending on a parameter, e.g. the speed]
[implementing an off line learning phase to determine and store useful data for on-line control]
[Characterised by the use of a particular software algorithm]
[specially adapted for high speeds, e.g. above nominal speed]
[using field weakening]
[specially adapted for optimising the efficiency at low load]
[specially adapted for very low speeds]
[specially adapted for damping motor oscillations, e.g. for reducing hunting]
[Controlling the motor in four quadrants]
[Polyphase or monophase asynchronous induction motors]
[Controlling based on slip frequency, e.g. adding slip frequency and speed proportional frequency]
[Controlling by adding a dc current (dc current braking H02P 3/24)]
[Observer control, e.g. using Luenberger observers or Kalman filters]
[Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage]
[Controlling the angular speed of one shaft (H02P 23/18 takes precedence)]
[Controlling the angular speed together with angular position or phase]
23/183 . . [of one shaft without controlling the prime mover]
23/186 . . [of one shaft by controlling the prime mover]
23/20 . Controlling the acceleration or deceleration
23/22 . Controlling the speed digitally using a reference oscillator, a speed proportional pulse rate feedback and a digital comparator
23/24 . Controlling the direction, e.g. clockwise or counterclockwise
23/26 . Power factor control [PFC]
23/28 . Controlling the motor by varying the switching frequency of switches connected to a DC supply and the motor phases
23/30 . Direct torque control [DTC] or field acceleration method [FAM]

25/00 Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details

NOTE
When classifying in this group, subject matter also relating to groups H02P 21/00, H02P 23/00 or H02P 27/00 is further classified in those groups whenever appropriate.

25/02 . . characterised by the kind of motor
25/022 . . Synchronous motors (H02P 25/064 takes precedence)

WARNING
Group H02P 25/022 is impacted by reclassification into group H02P 25/024.
Groups H02P 25/022 and H02P 25/024 should be considered in order to perform a complete search.

25/024 . . controlled by supply frequency

WARNING
Group H02P 25/024 is incomplete pending reclassification of documents from group H02P 25/022.
Groups H02P 25/022 and H02P 25/024 should be considered in order to perform a complete search.

25/026 . . . thereby detecting the rotor position

WARNING
Group H02P 25/026 is impacted by reclassification into group H02P 25/003.
Groups H02P 25/026 and H02P 25/003 should be considered in order to perform a complete search.

25/028 . . . with four quadrant control

WARNING
Group H02P 25/028 is impacted by reclassification into group H02P 25/034.
Groups H02P 25/028 and H02P 25/034 should be considered in order to perform a complete search.

25/03 . . . with brushless excitation

WARNING
Group H02P 25/03 is incomplete pending reclassification of documents from group H02P 25/026.
Groups H02P 25/026 and H02P 25/03 should be considered in order to perform a complete search.

25/032 . . Reciprocating, oscillating or vibrating motors
25/034 . . Voice coil motors (voice coil motors driven by DC power H02P 7/025)

WARNING
Group H02P 25/034 is incomplete pending reclassification of documents from group H02P 25/028.
Groups H02P 25/028 and H02P 25/034 should be considered in order to perform a complete search.

25/04 . . Single phase motors, e.g. capacitor motors
25/06 . . Linear motors

WARNING
Group H02P 25/06 is impacted by reclassification into group H02P 25/062, H02P 25/064 and H02P 25/066.
All groups listed in this Warning should be considered in order to perform a complete search.

25/062 . . . of the induction type

WARNING
Group H02P 25/062 is incomplete pending reclassification of documents from group H02P 25/06.
Groups H02P 25/06 and H02P 25/062 should be considered in order to perform a complete search.

25/064 . . . of the synchronous type

WARNING
Group H02P 25/064 is incomplete pending reclassification of documents from group H02P 25/06.
Groups H02P 25/06 and H02P 25/064 should be considered in order to perform a complete search.

25/066 of the stepping type

WARNING
Group H02P 25/066 is incomplete pending reclassification of documents from group H02P 25/06.
Groups H02P 25/06 and H02P 25/066 should be considered in order to perform a complete search.

25/08 . . Reluctance motors
25/0805 . . . [whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]
25/083 . . . Arrangements for increasing the switching speed from one coil to the next one

WARNING

Group H02P 25/083 is impacted by reclassification into group H02P 25/089. Groups H02P 25/083 and H02P 25/089 should be considered in order to perform a complete search.

25/086 . . . Commutation

WARNING

Group H02P 25/086 is impacted by reclassification into group H02P 25/0925. Groups H02P 25/086 and H02P 25/0925 should be considered in order to perform a complete search.

25/089 Sensorless control (direct torque control H02P 23/30)

WARNING

Group H02P 25/089 is incomplete pending reclassification of documents from group H02P 25/083. Groups H02P 25/083 and H02P 25/089 should be considered in order to perform a complete search.

25/092 . . . Converters specially adapted for controlling reluctance motors

25/095 [wherein the converter comprises only one switch per phase]

WARNING

Group H02P 25/099 is incomplete pending reclassification of documents from group H02P 25/086. Groups H02P 25/086 and H02P 25/0925 should be considered in order to perform a complete search.

25/098 . . . Arrangements for reducing torque ripple

25/10 . . . Commutator motors, e.g. repulsion motors

25/102 [Repulsion motors]

25/105 [Four quadrant control]

25/107 [Polyphase or monophase commutator motors]

25/12 with shiftable brushes

25/14 Universal motors (H02P 25/12 takes precedence)

25/145 [whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value, speed feedback]

25/16 . . . characterised by the circuit arrangement or by the kind of wiring

25/18 . . . with arrangements for switching the windings, e.g. with mechanical switches or relays

25/182 [whereby the speed is regulated by using centrifugal devices, e.g. switch, resistor]

25/184 [wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa]

25/186 [whereby the speed is regulated by using a periodic interrupter (H02P 25/30 takes precedence)]

25/188 {wherein the motor windings are switched from series to parallel or vice versa to control speed or torque}

25/20 . . . for pole-changing

25/22 . . . Multiple windings: Windings for more than three phases

25/24 . . . Variable impedance in stator or rotor circuit

25/26 . . . with arrangements for controlling secondary impedance

25/28 . . . using magnetic devices with controllable degree of saturation, e.g. transducers

25/30 . . . the motor being controlled by a control effected upon an ac generator supplying it

25/32 . . . using discharge tubes

25/325 [whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

27/00 Arrangements or methods for the control of AC motors characterised by the kind of supply voltage (of two or more motors H02P 5/00; of synchronous motors with electronic commutators H02P 6/00; of DC motors H02P 7/00; of stepping motors H02P 8/00)

NOTE

When classifying in this group, subject matter also relating to groups H02P 21/00, H02P 23/00 or H02P 25/00 is further classified in those groups whenever appropriate

27/02 . . . using supply voltage with constant frequency and variable amplitude

27/024 . . . using AC supply for only the rotor circuit or variable amplitude

27/026 [whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

27/04 . . . using variable-frequency supply voltage, e.g. inverter or converter supply voltage

27/045 [whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

27/047 [V/F converter, wherein the voltage is controlled proportionally with the frequency]

27/048 . . . using AC supply for only the rotor circuit or only the stator circuit

27/05 . . . using AC supply for both the rotor and the stator circuits, the frequency of supply to at least one circuit being variable

27/06 . . . using dc to ac converters or inverters (H02P 27/05 takes precedence)

27/08 with pulse width modulation

27/085 [wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency]

27/10 using bang-bang controllers

27/12 pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control

27/14 with three or more levels of voltage

27/16 . . . using ac to ac converters without intermediate conversion to dc (H02P 27/05 takes precedence)

27/18 varying the frequency by omitting half waves
Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors (arrangements for starting electric motors H02P 1/00; arrangements for stopping or slowing electric motors H02P 3/00; control of motors that can be connected to two or more different electric power supplies H02P 4/00; regulating or controlling the speed or torque of two or more electric motors H02P 5/00; vector control H02P 21/00)

WARNING

Group H02P 29/00 is impacted by reclassification into groups H02P 29/10, H02P 29/20, H02P 29/40, H02P 29/50, H02P 29/60, H02P 29/62, H02P 29/64, H02P 29/66 and H02P 29/68.

All groups listed in this Warning should be considered in order to perform a complete search.

29/0016 . . . [Control of angular speed of one shaft without controlling the prime mover]

29/0022 . . . [Controlling a brake between the prime mover and the load]

29/0027 . . . [Controlling a clutch between the prime mover and the load]

29/02 . . . Providing protection against overload without automatic interruption of supply (protection against faults of stepper motors H02P 8/36)

NOTE

Informative note

References listed below indicate places which could also be of interest when carrying out a search in respect of the subject matter covered by the preceding group:

Emergency protective circuit arrangements with automatic interruption if supply, in general H02H 7/08:

Emergency protective circuit arrangements for limiting excess current or voltage without disconnection in general H02H 7/08

29/024 . . . Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

WARNING

Group H02P 29/024 is impacted by reclassification into group H02P 29/0241.

Groups H02P 29/024 and H02P 29/0241 should be considered in order to perform a complete search.

29/0241 . . . [the fault being an overvoltage]

WARNING

Group H02P 29/0241 is incomplete pending reclassification of documents from group H02P 29/024.

Groups H02P 29/024 and H02P 29/0241 should be considered in order to perform a complete search.

29/0243 . . . [the fault being a broken phase]

29/025 . . . [the fault being a power interruption]

29/026 . . . [the fault being a power fluctuation]

29/027 . . . [the fault being an over-current]

29/028 . . . the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault

WARNING

Group H02P 29/028 is impacted by reclassification into group H02P 29/032.

Groups H02P 29/028 and H02P 29/032 should be considered in order to perform a complete search.

29/032 . . . Preventing damage to the motor, e.g. setting individual current limits for different drive conditions

WARNING

Group H02P 29/032 is incomplete pending reclassification of documents from group H02P 29/028.

Groups H02P 29/028 and H02P 29/032 should be considered in order to perform a complete search.

29/04 . . . by means of a separate brake

29/045 . . . [whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value]

29/10 . . . for preventing overspeed or under speed

29/20 . . . for controlling one motor used for different sequential operations

29/40 . . . Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load

29/50 . . . Reduction of harmonics

29/60 . . . Controlling or determining the temperature of the motor or of the drive (H02P 29/02 takes precedence)

29/62 . . . for raising the temperature of the motor

29/64 . . . Controlling or determining the temperature of the winding

29/66 . . . Controlling or determining the temperature of the rotor

29/662 . . . [the rotor having permanent magnets (H02P 29/67 takes precedence)]

29/664 . . . [the rotor having windings]

29/666 . . . [by rotor current detection]

29/67 . . . [Controlling or determining the motor temperature by back electromotive force [back-EMF] evaluation]

29/68 . . . based on the temperature of a drive component or a semiconductor component

29/685 . . . [compensating for Hall sensor temperature non-linearity]

31/00 Arrangements for regulating or controlling electric motors not provided for in groups H02P 1/00 - H02P 5/00, H02P 7/00 or H02P 21/00 - H02P 29/00

Indexing scheme associated with groups relating to the arrangements for controlling electric generators

2101/00	Special adaptation of control arrangements for generators
2101/10	for water-driven turbines
2101/15	for wind-driven turbines
Indexing scheme associated with groups relating to the arrangements for controlling electric generators

<table>
<thead>
<tr>
<th>Indexing scheme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2203/00</td>
<td>Controlling arrangements characterised by the type of generator</td>
</tr>
<tr>
<td>2203/10</td>
<td>of the asynchronous type</td>
</tr>
<tr>
<td>2203/20</td>
<td>of the synchronous type</td>
</tr>
</tbody>
</table>

2201/00 Indexing scheme relating to controlling arrangements characterised by the converter used

- 2201/01 AC-AC converter stage controlled to provide a defined AC voltage
- 2201/03 AC-DC converter stage controlled to provide a defined DC link voltage (general aspects of plural converters in cascade H02M)
- 2201/05 Capacitive half bridge, i.e. resonant inverter having two capacitors and two switches
- 2201/07 DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed (general aspects of plural converters in cascade H02M)
- 2201/09 Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor (general aspects of plural converters in cascade H02M)
- 2201/11 Buck converter, i.e. DC-DC step down converter decreasing the voltage between the supply and the inverter driving the motor (general aspects of plural converters in cascade H02M)
- 2201/13 DC-link of current link type, e.g. typically for thyristor bridges, having an inductor in series with rectifier
- 2201/15 Power factor Correction [PFC] circuit generating the DC link voltage for motor driving inverter (motor power factor control H02P 23/26)

2203/00 Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor

- 2203/01 Motor rotor position determination based on the detected or calculated phase inductance, e.g. for a Switched Reluctance Motor
- 2203/03 Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
- 2203/05 Determination of the rotor position by using two different methods and/or motor models
- 2203/07 Motor variable determination based on the ON-resistance of a power switch, i.e. the voltage across the switch is measured during the ON state of the switch and used to determine the current in the motor and to calculate the speed
- 2203/09 Motor speed determination based on the current and/or voltage without using a tachogenerator or a physical encoder

- 2203/11 Determination or estimation of the rotor position or other motor parameters based on the analysis of high frequency signals (position detection of motors with electronic commutators in dependence of the position H02P 6/185)

2205/00 Indexing scheme relating to controlling arrangements characterised by the control loops

- 2205/01 Current loop, i.e. comparison of the motor current with a current reference
- 2205/03 Power loop, i.e. comparison of the motor power with a power reference
- 2205/05 Torque loop, i.e. comparison of the motor torque with a torque reference
- 2205/07 Speed loop, i.e. comparison of the motor speed with a speed reference

2207/00 Indexing scheme relating to controlling arrangements characterised by the type of motor

- 2207/01 Asynchronous machines
- 2207/03 Double rotor motors or generators, i.e. electromagnetic transmissions having double rotor with motor and generator functions, e.g. for electrical variable transmission
- 2207/05 Synchronous machines, e.g. with permanent magnets or DC excitation
- 2207/055 Surface mounted magnet motors
- 2207/07 Doubly fed machines receiving two supplies both on the stator only wherein the power supply is fed to different sets of stator windings or to rotor and stator windings
- 2207/073 wherein only one converter is used, the other windings being supplied without converter, e.g. doubly-fed induction machines
- 2207/076 wherein both supplies are made via converters: especially doubly-fed induction machines; e.g. for starting

2209/00 Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current

- 2209/01 Motors with neutral point connected to the power supply
- 2209/03 Motors with neutral point disassociated, i.e. the windings ends are not connected directly to a common point
- 2209/05 Polyphase motors supplied from a single-phase power supply or a DC power supply
- 2209/07 Trapezoidal waveform
- 2209/09 PWM with fixed limited number of pulses per period
- 2209/095 One pulse per half period
- 2209/11 Sinusoidal waveform
- 2209/13 Different type of waveforms depending on the mode of operation