# CPC COOPERATIVE PATENT CLASSIFICATION

## H ELECTRICITY

(NOTE omitted)

## H02 GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER

### H02J CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY

#### NOTES

1. This subclass covers:
   - ac or dc mains or distribution networks;
   - circuit arrangements for battery supplies, including charging or control thereof, or coordinated supply from two or more sources of any kind;
   - circuit arrangements or systems for wireless supply or distribution of electric power.

2. This subclass does not cover:
   - control of a single motor, generator or dynamo-electric converter, of the types covered by subclass H01F or H02K, which is covered by subclass H02P;
   - control of a single motor or generator, of the types covered by subclass H02N, which is covered by that subclass.

#### WARNINGS

1. The following IPC groups are not in the CPC scheme. The subject matter for these IPC groups is classified in the following CPC groups:
   - H02J 7/10 covered by H02J 7/0072

2. In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

<table>
<thead>
<tr>
<th>1/00</th>
<th>Circuit arrangements for dc mains or dc distribution networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001/002</td>
<td>(Intermediate ac, e.g. dc supply with intermediated ac distribution)</td>
</tr>
<tr>
<td>2001/004</td>
<td>(Distribution of power generated by fuel cells)</td>
</tr>
<tr>
<td>2001/006</td>
<td>(Provisions for temporary connection of dc sources of essentially the same voltage, e.g. jumpstart cables)</td>
</tr>
<tr>
<td>2001/008</td>
<td>(Plural dc voltage, e.g. dc supply voltage with at least two different dc voltage levels)</td>
</tr>
<tr>
<td>1/02</td>
<td>Arrangements for reducing harmonics or ripples</td>
</tr>
<tr>
<td>1/04</td>
<td>Constant-current supply systems</td>
</tr>
<tr>
<td>1/06</td>
<td>Two-wire systems</td>
</tr>
<tr>
<td>1/08</td>
<td>Three-wire systems; Systems having more than three wires</td>
</tr>
<tr>
<td>1/10</td>
<td>Parallel operation of dc sources</td>
</tr>
<tr>
<td>1/102</td>
<td>(being switching converters (H02J 1/108, H02J 1/12 take precedence))</td>
</tr>
<tr>
<td>2001/014</td>
<td>... (for synchronisation)</td>
</tr>
<tr>
<td>2001/016</td>
<td>... (for load balancing or load symmetrisation)</td>
</tr>
<tr>
<td>1/108</td>
<td>... (using diodes blocking reverse current flow (H02J 1/12 takes precedence))</td>
</tr>
<tr>
<td>1/12</td>
<td>Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier</td>
</tr>
<tr>
<td>1/14</td>
<td>Balancing the load in a network</td>
</tr>
<tr>
<td>1/16</td>
<td>using dynamo-electric machines coupled to flywheels</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3/00</th>
<th>Circuit arrangements for ac mains or ac distribution networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003/001</td>
<td>(Emergency control, e.g. method to deal with contingencies)</td>
</tr>
</tbody>
</table>

2003/002 | ... (Flicker reduction, e.g. compensation of flicker introduced by non linear load) |
2003/003 | ... (Load forecast, e.g. method and systems for forecasting future load demand) |
3/005 | ... (Arrangements for selectively connecting the load to one among a plurality of power lines or power sources (for providing uninterruptable power supply H02J 9/00)) |
3/006 | ... (for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars) |
2003/007 | ... (Simulating, e.g. planning, reliability check, modeling) |
3/008 | ... (involving trading of energy or energy transmission rights) |
3/01 | ... (Arrangements for reducing harmonics or ripples) |
3/02 | ... using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power |
3/04 | ... for connecting networks of the same frequency but supplied from different sources |
3/06 | ... (Controlling transfer of power between connected networks; Controlling sharing of load between connected networks) |
3/08 | ... (Synchronising of networks) |
3/10 | ... (Constant-current supply systems) |
3/12 | ... (for adjusting voltage in ac networks by changing a characteristic of the network load) |
3/14 | ... by switching loads on to, or off from, network, e.g. progressively balanced loading |
2003/143 | ... (Household appliances management) |
2003/146 | ... (Tariff based load management) |
by adjustment of reactive power

Arrangements for adjusting, eliminating or compensating reactive power in networks (for adjustment of voltage H02J 3/16)

[using series compensators]

[wherein at least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]]

[using shunt compensators (H02J 3/1807, H02J 3/1878 take precedence)]

([with stepwise control, the possibility of switching in or out the entire compensating arrangement not being considered as stepwise control])

([with stepless control])

[wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters]

[wherein such reactive element is purely inductive, e.g. superconductive magnetic energy storage systems [SMES]]

[wherein such bridge converter is a multilevel converter]

[wherein the stepless control of reactive power is obtained by at least one reactive element connected in series with a semiconductor switch]

[Methods for planning installation of shunt reactive power compensators]

[using tap changing or phase shifting transformers]

[using rotating means, e.g. synchronous generators]

{ the arrangements being an integral part of the load, e.g. a motor, or of its control circuit]

in long overhead lines

in cables

Arrangements for preventing or reducing oscillations of power in networks (by control effected upon a single generator H02P 9/00)

Arrangements for eliminating or reducing asymmetry in polyphase networks

Arrangements for balancing of the load in a network by storage of energy

using dynamo-electric machines coupled to flywheels

using batteries with converting means

Arrangements for transfer of electric power between networks of substantially different frequency

Arrangements for transfer of electric power between ac networks via a high-tension dc link

Reducing harmonics or oscillations in HVDC]

Arrangements for parallely feeding a single network by two or more generators, converters or transformers

[Dispersed generators]

[the generators exploiting renewable energy]

[Solar energy, e.g. photovoltaic energy (generation of electric power by conversion of light H02S)]

[Maximum power point tracking control for photovoltaic sources]

[Wind energy (wind motors F03D)]

[using fuel cells (fuel cells per se H01M 8/00)]

[Islanding, i.e. disconnection of local power supply from the network]

Synchronising a generator for connection to a network or to another generator

with automatic parallel connection when synchronisation is achieved

with means for ensuring correct phase sequence

Controlling of the sharing of output between the generators, converters, or transformers

Controlling the sharing of the in-phase component

Controlling the sharing of the out-of-phase component

Circuit arrangements for mains or distribution networks not specified as ac or dc

Circuit arrangements for transfer of electric power between ac networks and dc networks (H02J 3/36 takes precedence)

WARNING

Group H02J 5/00 is impacted by reclassification into groups H02J 50/00 – H02J 50/90.

Groups H02J 5/00 and H02J 50/00 – H02J 50/90 should be considered in order to perform a complete search.

Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

[Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source]

with provision for charging different types of batteries

(with data exchange between battery and charger (H02J 7/0011 takes precedence))

[using passive battery identification means, e.g. resistors, capacitors (H02J 7/0011 takes precedence; identification by mechanical connections H02J 7/0045)]

[in response to measured battery parameters, e.g. voltage, current, temperature profile]

[using switches, contacts or markings, e.g. optical, magnetic, barcode]

[with charge circuits contained within battery unit]

[for charging several batteries simultaneously or sequentially (H02J 7/1423 takes precedence)]

[Circuits for equalisation of charge between batteries]

[using shunting, discharge or bypass circuits]

[using separate charge circuits]

[using switched or multiplexed charge circuits]
H02J

7/0021 . . . [Monitoring or indicating circuits (H02J 7/0026 takes precedence)]
7/0022 . . . [Management of charging with batteries permanently connected to charge circuit (H02J 7/0014 takes precedence)]
7/0024 . . . [Parallel/serial switching of connection of batteries to charge or load circuit]
7/0026 . . . [using safety or protection circuits, e.g. overcharge/discharge disconnection]
7/0027 . . . [Stations for charging mobile units, e.g. of electric vehicles, of mobile telephones (H02J 7/0021, H02J 7/0026 take precedence)]
7/0029 . . . [with safety devices (H02J 7/0026 takes precedence)]
7/0031 . . . [using battery or load disconnect circuits (H02J 9/0002 takes precedence)]
7/0032 . . . [disconnection of loads if battery is not under charge, e.g. in vehicle if engine is not running]
7/0034 . . . [using reverse polarity correcting or protecting circuits (mechanical means of polarity protection H02J 7/0045)]
7/0036 . . . [using connection detecting circuits (H02J 7/0034 takes precedence)]
2007/0037 . . . (Overcharge protection)
2007/0039 . . . (Overcurrent protection)
2007/004 . . . (Overdischarge protection)
7/0042 . . . [characterised by the mechanical construction (H02J 7/0035 takes precedence)]
7/0044 . . . [specially adapted for holding portable devices containing batteries (H02J 7/0045 takes precedence)]
7/0045 . . . [concerning the insertion or the connection of the batteries (charging from ac mains using non-contact coupling H02J 7/025)]
7/0047 . . . [with indicating devices (H02J 7/0021 takes precedence)]
2007/0049 . . . (Detection of fully charged condition)
2007/005 . . . (Detection of remaining charge capacity)
7/0052 . . . [Charge circuits only (H02J 7/0003, H02J 7/0013, H02J 7/002 take precedence)]
7/0054 . . . [Battery to battery charging (with circuits for polarity protection H02J 7/0034)]
7/0055 . . . [adapted for charging from various sources, e.g. AC, DC, multivoltage]
7/0057 . . . [adapted for charge maintenance or battery rejuvenation (H02J 7/0075 takes precedence)]
2007/0059 . . . [characterised by the converter]
2007/006 . . . [Charge provided using dc bus or data bus of a computer]
2007/0062 . . . [Charge provided using USB port connectors]
7/0063 . . . [Circuits adapted for supplying loads only]
7/0065 . . . [using converters specially adapted for use with a battery]
2007/0067 . . . [Discharge management, i.e. discharge current reduction at low state of charge, sequential battery discharge in systems with a plurality of battery]
7/0068 . . . [Battery or charger load switching, e.g. concurrent charging and load supply (H02J 7/0013 takes precedence)]
7/007 . . . [Regulation of charging current or voltage]
7/0072 . . . [using semiconductor devices only]
7/0073 . . . [with a programmable charge schedule (H02J 7/0093 takes precedence)]
7/0075 . . . . . . [for charge maintenance, battery initiation or rejuvenation]
7/0077 . . . . . . [the charge cycle being terminated in response to electric parameters (H02J 7/0093 takes precedence)]
7/0078 . . . . . . [in response to discharge current, e.g. using a coulometer, pilot cell]
7/008 . . . . . . [with the battery connected to the charge circuit]
7/0081 . . . . . . [and in response to battery voltage gradient]
7/0083 . . . . . . [and in response to charge current gradient]
7/0085 . . . . . . [with the battery disconnected from the charge circuit]
7/0086 . . . . . . [and in response to battery voltage]
7/0088 . . . . . . [the charge cycle being terminated in response to non-electric parameters (H02J 7/0093 takes precedence)]
7/009 . . . . . . [in response to degree of gas development in the battery]
7/0091 . . . . . . [in response to temperature of the battery]
7/0093 . . . . . . [with introduction of pulses during the charging process]
2007/0095 . . . [Control circuit supply, e.g. means for supplying power to the control circuit]
2007/0096 . . . [Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge]
2007/0098 . . . [Smart battery, e.g. battery with means for data exchanging with charger]
7/02 . . . . . . [for charging batteries from ac mains by converters]

**WARNING**

Group H02J 7/02 is impacted by reclassification into groups H02J 50/00 – H02J 50/90.

Groups H02J 7/02 and H02J 50/00 – H02J 50/90 should be considered in order to perform a complete search.

7/022 . . . [characterised by the type of converter]
7/025 . . . [using non-contact coupling, e.g. inductive, capacitive]

**WARNING**

Group H02J 7/025 is impacted by reclassification into groups H02J 50/00 – H02J 50/90.

Groups H02J 7/025 and H02J 50/00 – H02J 50/90 should be considered in order to perform a complete search.

7/027 . . . [with safety or indicating device]
7/004 . . . [Regulation of charging current or voltage]
7/041 . . . [with a programmable charge schedule]
7/042 . . . [the charge cycle being controlled in response to a measured parameter]
7/044 . . . [in response to integrated charge or discharge current]
7/045 . . . [in response to voltage or current]
7/047 . . . [in response to temperature]
7/048 . . . [in response to degree of gas development in the battery]
7/06 . . . [using discharge tubes or semiconductor devices]
7/08 . . . [using discharge tubes only]
for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle bicycles

7/1407 for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle bicycles

7/1415 [with a generator driven by a prime mover other than the motor of a vehicle]

7/1423 [with multiple batteries or generators]

7/1438 [Multiple generators]

7/1446 [in response to parameters of a vehicle]

7/1453 [with temperature compensation]

7/1461 [with safety or indicating devices]

7/1469 [Regulation of the charging current or voltage otherwise than by variation of field]

7/1476 [by mechanical action on the generator]

7/1484 [by commutation of the output windings of the generator]

7/1492 [by means of controlling devices between the generator output and the battery]

7/16 regulation of the charging current or voltage by variation of field

7/163 [with special means for initiating or limiting the excitation current]

7/166 [with safety or indicating devices]

7/18 due to variation of ohmic resistance in field circuit, using resistance switching in or out of circuit step by step

7/20 due to variation of continuously variable ohmic resistor

7/22 due to variation of make-to-break ratio of intermittently-operating contacts, e.g. using Tirrill regulator

7/225 [characterised by the mechanical construction]

7/24 using discharge tubes or semiconductor devices

7/241 [discharge tubes only]

7/242 [semiconductor devices as final control devices]

7/244 [with on/off action]

7/245 [with pulse modulation]

7/247 [using thyristors or triacs as final control devices]

7/248 [characterised by the mechanical construction]

7/26 using magnetic devices with controllable degree of saturation

7/28 using magnetic devices with controllable degree of saturation in combination with controlled discharge tube or controlled semiconductor device

7/30 using armature-reaction-excited machines

7/32 for charging batteries from a charging set comprising a non-electric prime mover (rotating at constant speed)

7/322 [by variation of field, using discharge tubes]

7/324 [by variation of field, using semiconductor devices]

7/326 [by variation of field, using armature-reaction-excited machines]

7/328 [by variation of field, using magnetic devices having controllable degree of saturation]

7/34 parallel operation in networks using both storage and other dc sources, e.g. providing buffering (H02J 7/14 takes precedence)

7/345 [using capacitors as storage or buffering devices]

7/35 with light sensitive cells

7/355 [characterised by the mechanical construction]

7/36 arrangements using end-cell switching

9/00 Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting

9/002 [in which a reserve is maintained in an energy source by disconnecting non-critical loads, e.g. maintaining a reserve of charge in a vehicle battery for starting an engine]

9/005 [using a power saving mode (for copiers G03G 15/5004)]

2009/007 [Detection of the absence of a load]

9/02 in which an auxiliary distribution system and its associated lamps are brought into service

9/04 in which the distribution system is disconnected from the normal source and connected to a standby source

9/06 with automatic change-over

9/061 [characterised by the use of electronic means (H02J 9/062 and H02J 9/065 take precedence)]

9/062 [involving non rotating DC/AC converters]

2009/063 [Common neutral, e.g. ac input neutral line connected to ac output neutral line and dc middle point]

9/065 [for lighting purposes]

9/066 [characterised by the use of dynamo-electric machines (H02J 9/08 takes precedence)]

2009/067 [using multi-primary transformers, e.g. transformer having one primary for each ac energy source and a secondary for the loads]

2009/068 [Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection]

9/08 requiring starting of a prime-mover

11/00 Circuit arrangements for providing service supply to auxiliaries of stations in which electric power is generated, distributed or converted

13/00 Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network ([circuits for indication of single switches H01H 9/167; circuits specially adapted for remote switching of lighting via the power line H05B 37/0263])
13/00/3 . [for DC networks]
13/00/6 . [for single frequency AC networks]
13/00/1 . . [characterised by the display, e.g. of data or controls]
13/00/13 . . [characterised by transmission structure between the control or monitoring unit and the controlled or monitored unit]
13/00/17 . . . [with direct transmission between the control or monitoring unit and the controlled or monitored unit]
13/00/2 . . . . [using the power network as support for the transmission]
13/00/24 . . . . [using pulsed signals]
13/00/27 . . . . . [Details of signals treatment means]
13/00/31 . . . . . . [using static semiconductor means]
13/00/34 . . . . . . . [Transmitters]
13/00/37 . . . . . . . [Receivers]
13/00/41 . . . . . . . . [using lamps or electromechanical means]
13/00/44 . . . . . . . . [using DC signal superposition]
13/00/48 . . . . . . . . [using modification of a parameter of the network power signal]
13/00/51 . . . . . . . . [Zero-crossing time]
13/00/55 . . . . . . . . [using an auxiliary transmission line]
13/00/58 . . . . . . . . [carrying signals having the network frequency or DC signals]
13/00/62 . . . . . . . . [using a data transmission bus]
13/00/65 . . . . . . . . [using optical means]
13/00/68 . . . . . . . . . [using ultrasonic means]
13/00/72 . . . . . . . . . [using phone lines]
13/00/75 . . . . . . . . . [using radio means]
13/00/79 . . . . . . . . . [with transmission using an intermediate treatment level between the control or monitoring unit and the controlled or monitored unit]
13/00/82 . . . . . . . . . [using the power network as transmission support]
13/00/86 . . . . . . . . . [with transmission using plurality of intermediate treatment level between the control or monitoring unit and the controlled or monitored unit]
13/00/89 . . . . . . . . . . [using the power network as transmission support]
13/00/93 . . . . . . . . . . . [for AC networks with plurality frequencies]
13/00/96 . . . . . . . . . . . [for networks combining AC and DC power]
15/00 Systems for storing electric energy (mechanical systems therefor F01 - F04; in chemical form H01M)
15/00/3 . . [in the form of hydraulic energy]
15/00/6 . . [in the form of pneumatic energy (accumulators for supplying fluid under pressure F15B 1/04)]
17/00 Systems for supplying or distributing electric power by electromagnetic waves

**WARNING**

Group H02J 17/00 is no longer used for the classification of documents as of February 1, 2016. The content of this group is being reclassified into groups H02J 50/00 – H02J 50/90.

Groups H02J 17/00 and H02J 50/00 – H02J 50/90 should be considered in order to perform a complete search.

**NOTES**

1. In this main group, the specific types of wireless technology used for the power transmission are covered in groups H02J 50/05 - H02J 50/30, while aspects relevant to the circuit arrangements or systems thereof are covered in groups H02J 50/40 - H02J 50/90.

2. In this main group, multi-aspect classification is applied, so that subject matter characterised by aspects covered by more than one of its groups should be classified in each of those groups.

**WARNING**

Groups H02J 50/00 – H02J 50/90 are incomplete pending reclassification of documents from groups H02J 5/00, H02J 5/005, H02J 7/02 and H02J 17/00.

Groups H02J 50/00, H02J 5/005, H02J 7/02 and H02J 17/00 and H02J 50/00 – H02J 50/90 should be considered in order to perform a complete search.

50/05 . using capacitive coupling
50/10 . using inductive coupling
50/12 . . of the resonant type
50/15 . using ultrasonic waves
50/20 . using microwaves or radio frequency waves
50/23 . . characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
50/27 . . characterised by the type of receiving antennas, e.g. rectennas
50/30 . using light, e.g. lasers
50/40 . using two or more transmitting or receiving devices (H02J 50/50 takes precedence)
50/50 . using additional energy repeaters between transmitting devices and receiving devices
50/60 . responsive to the presence of foreign objects, e.g. detection of living beings
50/70 . involving the reduction of electric, magnetic or electromagnetic leakage fields
50/80 . involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
50/90 . involving detection or optimisation of position, e.g. alignment