EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS (indicating or signalling undesired working conditions G01R, e.g. G01R 31/00, G08B; locating faults along lines G01R 31/08; emergency protective devices H01H)

This subclass covers only circuit arrangements for the automatic protection of electric lines or electric machines or apparatus in the event of an undesired change from normal working conditions.

1/00 Details of emergency protective circuit arrangements
1/0007 . [concerning the detecting means (in general G01R or other subclasses of G01; reed switches H01H 71/2445)]
1/0015 . . [Using arc detectors]
1/0023 . . . [sensing non electrical parameters, e.g. by optical, pneumatic, thermal or sonic sensors]
1/003 . . [Fault detection by injection of an auxiliary voltage (same for detection of earth fault currents H02H 3/17; for monitoring earth connection H02H 5/105)]
1/0038 . [concerning the connection of the detecting means, e.g. for reducing their number]
1/0046 . . [Commutating the detecting means in dependence of the fault, e.g. for reducing their number]
1/0053 . . [Means for storing the measured quantities during a predetermined time]
1/0061 . [concerning transmission of signals (transmission of measured quantities or switching orders; sectionalised protection involving signal transmission between at least two stations H02H 7/261; comparison of the voltage or current values at two spaced portions of a single system H02H 3/28; transferring the output of a sensing member to another variable G01D 5/00; electrical measuring arrangements using modulation of electromagnetic waves, e.g. light beams G01R 15/24, G01R 15/26)]
1/0069 . . [by means of light or heat rays]
1/0076 . . [by superposition on the watched current]
1/0084 . . [by means of pilot wires or a telephone network; watching of these wires]
1/0092 . [concerning the data processing means, e.g. expert systems, neural networks]
1/04 . Arrangements for preventing response to transient abnormal conditions, e.g. to lightning (or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks)]
1/043 . . [to inrush currents (H02H 1/046 takes precedence; differential protection of transformers H02H 7/045)]
1/046 . . [upon detecting saturation of current transformers (for differential protection H02H 3/283)]
1/06 . Arrangements for supplying operative power (power supply arrangements in general G05F, H02M)
1/063 . . [primary power being supplied by fault current] 1/066 . . . [and comprising a shunt regulator]
3/00 Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection (specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems H02H 7/00; systems for change-over to standby supply H02I 9/00; { integrated protection (for motors H02H 7/0822)}]
3/003 . . [responsive to reversal of power transmission direction (reversal of direct current H02H 3/18)]
3/006 . . [Calibration or setting of parameters]
3/002 . . Details
3/021 . . . [concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order (disconnection at zero value in general H02K 17/18)]
3/023 [by short-circuiting]
3/025 . . . [Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection]
3/027 . . . [with automatic disconnection after a predetermined time (H02H 3/03, H02H 3/06 take precedence ; timing in overcurrent protection circuits H02H 3/093; in undervoltage protection circuits H02H 3/247; staggered disconnection H02H 7/30)]
3/033 [with several disconnections in a preferential order, e.g. following priority of the users, load repartition] (H02H 3/06 takes precedence)
3/04 . . . with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned ([watching of pilot wires H02H 1/008; protection of protective arrangements H02H 7/008; indication of the state of electronic switches H03K 17/18])

3/042 . . . [combined with means for locating the fault (locating faults in cables G01R 31/08)]

3/044 . . . [Checking correct functioning of protective arrangements, e.g. by simulating a fault (for differential current circuit breakers H02H 3/335)]

3/046 . . . [Signalling the blowing of a fuse (detecting non functioning of a lamp H05B 37/03)]

3/048 . . . [Checking overvoltage diveters]

3/05 . . . with means for increasing reliability, e.g. redundancy arrangements ([for logic circuits H03K 19/003)]

3/06 . . . with automatic reconnection

3/063 . . . [Details concerning the co-operation of many similar arrangements, e.g. in a network (sectionalised protection H02H 7/26)]

3/066 . . . [Reconnection being a consequence of eliminating the fault which caused disconnection]

3/07 . . . and with permanent disconnection after a predetermined number of reconnection cycles

3/08 . . . responsive to excess current (responsive to abnormal temperature caused by excess current H02H 5/04)

3/081 . . . [and depending on the direction]

3/083 . . . [for three-phase systems]

3/085 . . . [making use of a thermal sensor, e.g. thermistor, heated by the excess current (also responsive to the temperature of the protected device H02H 5/041, thermal images H02H 6/00)]

3/087 . . . for dc applications

3/093 . . . [with timing means ([in general H02H 3/027; thermal delay H02H 3/085; timing means for undervoltage protection H02H 3/247]]

3/0935 . . . [the timing being determined by numerical means]

3/10 . . . additionally responsive to some other abnormal electrical conditions

3/105 . . . [responsive to excess current and fault current to earth]

3/12 . . . responsive to underload or no-load ([for motors H02H 7/0827])

3/13 . . . [for multiphase applications, e.g. phase interruption]

3/14 . . . responsive to occurrence of voltage on parts normally at earth potential ([monitoring earth connection H02H 5/105])

3/16 . . . responsive to fault current to earth, frame or mass (with balanced or differential arrangement H02H 3/26; ; monitoring earth connection H02H 5/105)]

3/162 . . . [for ac systems]

3/165 . . . [for three-phase systems]

3/167 . . . [combined with other earth-fault protective arrangements]

3/17 . . . by means of an auxiliary voltage injected into the installation to be protected ([using summation current transformers H02H 3/33])

3/18 . . . responsive to reversal of direct current

3/20 . . . responsive to excess voltage

3/202 . . . [for dc systems]

3/205 . . . [using a spark-gap as detector]

3/207 . . . [also responsive to under-voltage (window comparators for indication G01R 19/165)]

3/22 . . . of short duration, e.g. lightning

3/24 . . . responsive to undervoltage or no-voltage ([H02H 3/207 takes precedence])

3/243 . . . [for DC systems]

3/247 . . . having timing means

3/253 . . . [for multiphase applications, e.g. phase interruption]

3/26 . . . responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents

3/265 . . . [responsive to phase angle between voltages or between currents]

3/28 . . . involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus ([for transformers H02H 7/045])

3/283 . . . [and taking into account saturation of current transformers]

3/286 . . . [involving comparison of similar homopolar quantities]

3/30 . . . using pilot wires or other signalling channel

3/302 . . . [involving phase comparison]

3/305 . . . [involving current comparison]

3/307 . . . [involving comparison of quantities derived from a plurality of phases, e.g. homopolar quantities; using mixing transformers]

3/32 . . . [involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors]

3/325 . . . [involving voltage comparison (H02H 3/347 takes precedence)]

3/33 . . . using summation current transformers (H02H 3/347 takes precedence)

3/331 . . . [responsive to earthing of the neutral conductor (H02H 3/338 takes precedence)]

3/332 . . . [with means responsive to dc component in the fault current]

3/334 . . . [with means to produce an artificial unbalance for other protection or monitoring reasons or remote control (H02H 3/338 takes precedence)]

3/335 . . . [the main function being self testing of the device]

3/337 . . . [avoiding disconnection due to reactive fault currents]

3/338 . . . [also responsive to wiring error, e.g. loss of neutral, break]

3/34 . . . [of a three-phase system]

3/343 . . . [using phase sequence analysers]

3/347 . . . using summation current transformers

3/353 . . . [involving comparison of phase voltages]

3/36 . . . [involving comparison of the voltage or current values at corresponding points of different systems, e.g. of parallel feeder systems]

3/365 . . . [one of the systems simulating the other system]
5/12 . responsive to undesired approach to, or touching of, live parts by living beings

6/00 Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g., using thermal images

6/005 . [using digital thermal images]

7/00 Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions (structural association of protective devices with specific machines or apparatus and their protection without automatic disconnection, see the relevant subclass for the machine or apparatus)

7/001 . [for superconducting apparatus, e.g. coils, lines, machines]

7/003 . [for electrostatic apparatus]

7/005 . [for remote controlled apparatus; for lines connecting such apparatus]

7/006 . [for non-insulated low-voltage distribution systems, e.g. low-voltage halogen-lamp system]

7/008 . [for protective arrangements according to this subclass (H02H 9/042, H02H 9/043 take precedence; protection of spark-gaps H02H 7/24)]

7/04 . for transformers

7/042 . . . [for current transformers]

7/045 . . . Differential protection of transformers

7/0455 . . . [taking into account saturation of current transformers]

7/05 . . . for capacitive voltage transformers, e.g. against resonant conditions

7/055 . . . for tapped transformers or tap-changing means

7/06 . . . for dynamo-electric generators; for synchronous capacitors

7/062 . . . [for parallel connected generators]

7/065 . . . [against excitation faults]

7/067 . . . [on occurrence of a load dump (control on sudden change of load H02P 9/11); safety devices for generators driven at varying speed H02J 7/1461]

7/08 . . . for dynamo-electric motors

7/0805 . . . [for synchronous motors]

7/0811 . . . [for dc motors (H02H 7/0833 takes precedence)]

7/0816 . . . [concerning the starting sequence, e.g. limiting the number of starts per time unit, monitoring speed during starting]

7/0822 . . . [Integrated protection, motor control centres]

7/0827 . . . [responsive to underload or no-load, e.g. pump-off control circuits for pump motors]

7/0833 . . . [for electric motors with control arrangements]

7/0838 . . . [with H-bridge circuit]

7/0844 . . . [Fail safe control, e.g. by comparing control signal and controlled current, isolating motor on commutation error]

7/085 . . . against excessive load (H02H 6/00 takes precedence)

7/0851 . . . [for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal]
for batteries; for accumulators

7/18 . . . for capacitors (for synchronous capacitors H02H 7/086)

7/16 . . . for electronic equipment (for converters H02H 7/10; for electric measuring instruments G01R 1/56; for dc voltage or current semiconductor regulators G05F 1/56d; for amplifiers H03F 1/52; for electronic switching circuits H03K 17/08)

7/055 . . . {for controlled semi-conductors which are not included in a specific circuit arrangement}

7/22 . . . for distribution gear, e.g. bus-bar systems; for switching devices { (detecting mechanical or electrical defects in gas-insulated switchgears H02B 13/065) }

7/222 . . . {for switches}

7/224 . . . {Anti-pump circuits}

7/226 . . . {for wires or cables, e.g. heating wires}

7/228 . . . {for covered wires or cables}

7/24 . . . for spark-gap arresters

7/26 . . . Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occurred (locating faults in cables G01R 31/08)

7/261 . . . {involving signal transmission between at least two stations (transmission of signals in general H02H 1/0061) }

7/262 . . . {involving transmissions of switching or blocking orders}

7/263 . . . {involving transmissions of measured values (comparison of currents or voltages using pilot wires H02H 3/30) }

7/265 . . . {making use of travelling wave theory}

7/266 . . . {involving switching on a spare supply (in general H02J 9/00) }

7/267 . . . {for parallel lines and wires}

7/268 . . . {for dc systems}

7/28 . . . for meshed systems

7/30 . . . Staggered disconnection

9/00 Emergency protective circuit arrangements for limiting excess current or voltage without disconnection (structural association of protective devices with specific machines or apparatus, see the relevant subclass for the machine or apparatus)

9/001 . . . [limiting speed of change of electric quantities, e.g. soft switching on or off (progressive control of electronic switches for eliminating interferences H03K 17/16)]

9/002 . . . [limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers]

9/004 . . . [in connection with live-insertion of plug-in units (involving communication with a central processing unit G06F 13/40)]

9/005 . . . [avoiding undesired transient conditions]

9/007 . . . [avoiding or damping oscillations, e.g. fenoresonance or travelling waves]

9/008 . . . [Intrinsically safe circuits]

9/02 . . . responsive to excess current { (current limitation for voltage regulators G05F 1/573; disconnection after limiting H02H 3/025) }

9/021 . . . [Current limitation using saturable reactors (H02H 9/023 takes precedence)]

9/023 . . . [Current limitation using superconducting elements]

9/025 . . . [Current limitation using field effect transistors]
9/026 . . {Current limitation using PTC resistors, i.e. resistors with a large positive temperature coefficient}

9/028 . . {Current limitation by detuning a series resonant circuit (H02H 9/021, H02H 9/023 take precedence)}

9/04 . . responsive to excess voltage (lightning arrestors H01C 7/12, H01C 8/04, H01G 9/18, H01T)

9/041 . . [using a short-circuiting device]

9/042 . . {comprising means to limit the absorbed power or indicate damaged over-voltage protection device}

9/043 . . {Protection of over-voltage protection device by short-circuiting}

9/044 . . {Physical layout, materials not provided for elsewhere (varistors H01C 7/12, Ovshinsky devices H01L 45/00; spark-gaps H01T)}

9/045 . . {adapted to a particular application and not provided for elsewhere}

9/046 . . . {responsive to excess voltage appearing at terminals of integrated circuits (protection by specific structural integration design H01L 27/0248)}

9/047 . . . {Free-wheeling circuits}

9/048 . . . {Anti-latching or quenching devices, i.e. bringing the protection device back to its normal state after a protection action}

9/049 . . . {Circuit arrangements for limiting the number of protection devices}

9/06 . . using spark-gap arresters

9/08 . . Limitation or suppression of earth fault currents, e.g. Petersen coil

11/00 Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result

11/001 . . {in case of incorrect or interrupted earth connection (disconnection by breaking of earth connection H02H 5/105)}

11/002 . . {in case of inverted polarity or connection; with switching for obtaining correct connection}

11/003 . . {using a field effect transistor as protecting element in one of the supply lines}

11/004 . . {in case of incorrect phase sequence; with switching for obtaining correct phase sequence (protection of motors against wrong direction of rotation H02H 7/007)}

11/005 . . {in case of too low isolation resistance, too high load, short-circuit; earth fault}

11/006 . . {in case of too high or too low voltage}

11/007 . . {involving automatic switching for adapting the protected apparatus to the supply voltage}

11/008 . . {preventing unsafe switching operations in substations (Schaltfehlerschutz)}