CPC COOPERATIVE PATENT CLASSIFICATION

G PHYSICS
 (NOTES omitted)

INSTRUMENTS

G11 INFORMATION STORAGE

G11C STATIC STORES (information storage based on relative movement between record carrier and transducer G11B; semiconductor devices for storage H01L, e.g. H01L 27/108 - H01L 27/11597; pulse technique in general H03K, e.g. electronic switches H03K 17/00)

NOTES
1. This subclass covers devices or arrangements for storage of digital or analogue information in which no relative movement takes place between an information storage element and a transducer; which incorporate a selecting-device for writing-in or reading-out the information into or from the store
2. This subclass does not cover elements not adapted for storage and not provided with such means as referred to in Note (3) below, which elements are classified in the appropriate subclass, e.g. of H01, H03K.
3. In this subclass, the following terms are used with the meaning indicated:
 • “storage element” is an element which can hold at least one item of information and is provided with means for writing-in or reading-out this information;
 • “memory” is a device, including storage elements, which can hold information to be extracted when desired.

WARNINGS
1. The following IPC groups are not in the CPC scheme. The subject matter for these IPC groups is classified in the following CPC groups:
 G11C 8/02 covered by G11C 8/00, H03K 17/00
 G11C 11/4193 covered by G11C 11/00
 G11C 11/4195 covered by G11C 11/00
 G11C 11/4197 covered by G11C 11/00

2. In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

5/00 Details of stores covered by G11C 11/00
5/005 . [Circuit means for protection against loss of information of semiconductor storage devices (manUFACTURING semi-conductor by using bombardement with radiation H01L 21/26; error detection, monitoring G06F 11/00)]
5/02 . Disposition of storage elements, e.g. in the form of a matrix array
5/025 . . [Geometric lay-out considerations of storage- and peripheral-blocks in a semiconductor storage device (geometrical lay-out of the components in integrated circuits, H01L 27/0207)]
5/04 . . [Supports for storage elements; e.g. memory modules; Mounting or fixing of storage elements on such supports]
5/05 . . . Supporting of cores in matrix
5/06 . [Arrangements for interconnecting storage elements electrically, e.g. by wiring]
5/063 . . . [Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay]
5/066 . . . [Means for reducing external access-lines for a semiconductor memory clip, e.g. by multiplexing at least address and data signals]
5/08 . . for interconnecting magnetic elements, e.g. toroidal cores
5/10 . . for interconnecting capacitors
5/12 . . Apparatus or processes for interconnecting storage elements, e.g. for threading magnetic cores
5/14 . . Power supply arrangements (in general G05F, H02J, H02M), e.g. Power down/chip (de)selection, layout of wiring/power grids, multiple supply levels]
5/141 . . . [Battery and back-up supplies (back-up supplies per se H02J 9/061)]
5/142 . . . [Contactless power supplies, e.g. RF, induction, IR (in general H02J 5/00)]
5/143 . . . [Detection of memory cassette insertion/removal; Continuity checks of supply and ground lines (in general G01R 31/02); Detection of supply variations/interruptions/levels (G11C 5/148 takes precedence); Switching between alternative supplies (back-up supplies per se H02J 9/061), (G11C 5/141 takes precedence)]
5/144 . . . [Detection of predetermined disconnection or reduction of power supply, e.g. power down or power standby]
5/145 . . . [Applications of charge pumps (charge pumps per se H02M 3/07); Boosted voltage circuits (for logic circuits or inverting circuits H03K 19/00); Clamp circuits therefor (G11C 5/141 takes precedence)]
Arrangements for writing information into, or reading information out from, a digital store (G11C 5/00 takes precedence; auxiliary circuits for stores using semiconductor devices G11C 11/4063, G11C 11/413)

7/005 . [with combined beam-and individual cell access]
7/002 . [with means for avoiding parasitic signals]
7/004 . [with means for avoiding disturbances due to temperature effects]
7/006 . Sense amplifiers; Associated circuits, {e.g. timing or triggering circuits} (amplifiers per se H03F, H03K)
7/002 . [Differential amplifiers of non-latching type, e.g. comparators, long-tailed pairs]
7/006 . [Differential amplifiers of latching type]
7/007 . [Single-ended amplifiers]
7/008 . Control thereof
7/10 . [Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers]
7/1003 . [Interface circuits for daisy chain or ring bus memory arrangements]
7/1006 . [Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor]
7/1009 . [Data masking during input/output]
7/1012 . [Data reordering during input/output, e.g. crossbars, layers of multiplexers, shifting or rotating]
7/1015 . [Read-write modes for single port memories, i.e. having either a random port or a serial port]
7/1018 . [Serial bit line access mode, e.g. using bit line address shift registers, bit line address counters, bit line burst counters]
7/1021 . [Page serial bit line access mode, i.e. using an enabled row address stroke pulse with its associated word line address and a sequence of enabled column address stroke pulses each with its associated bit line address]
7/1024 . [Extended data output [EDO] mode, i.e. keeping output buffer enabled during an extended period of time]
7/1027 . [Static column decode serial bit line access mode, i.e. using an enabled row address stroke pulse with its associated word line address and a sequence of enabled bit line addresses]
7/103 . [using serially addressed read-write data registers (G11C 7/1036 takes precedence)]
7/1033 . [using data registers of which only one stage is addressed for sequentially outputting data from a predetermined number of stages, e.g. nibble read-write mode]
7/1036 . [using data shift registers]

7/1039 . . . [using pipelining techniques, i.e. using latches between functional memory parts, e.g. row/column decoders, I/O buffers, sense amplifiers]
7/1042 . . . [using interleaving techniques, i.e. read-write of one part of the memory while preparing another part]
7/1045 . . . [Read-write mode select circuits]
7/1048 . . . [Data bus control circuits, e.g. precharging, presetting, equalising]
7/1051 . . . [Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits]
7/1054 . . . [Optical output buffers]
7/1057 . . . [Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load]
7/106 . . . [Data output latches]
7/1063 . [Control signal output circuits, e.g. status or busy flags, feedback command signals]
7/1066 . . . [Output synchronization]
7/1069 . [I/O lines read out arrangements (global or local sense amplifiers for bit lines G11C 7/006)]
7/1072 . . . [for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories]
7/1075 . . . [for multiport memories each having random access ports and serial ports, e.g. video RAM]
7/1078 . . . [Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits]
7/1081 . . . [Optical input buffers]
7/1084 . . . [Data input buffers, e.g. comprising level conversion circuits, circuits for adapting load]
7/1087 . [Data input latches]
7/109 . [Control signal input circuits]
7/1093 . [Input synchronization]
7/1096 . . . [Write circuits, e.g. I/O line write drivers]
7/12 . . [Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines]
7/14 . [Dummy cell management; Sense reference voltage generators]
7/18 . . . [Bit line organisation; Bit line lay-out]
7/20 . . . [Memory initialisation circuits, e.g. when powering up or down, memory clear, latent image memory]
7/22 . . . [Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management]
7/222 . . . [Clock generating, synchronizing or distributing circuits within memory device]
7/225 . . . [Clock input buffers]
7/227 . [Timing of memory operations based on dummy memory elements or replica circuits]
7/24 . . . [Memory cell safety or protection circuits, e.g. arrangements for preventing inadvertent reading or writing; Status cells; Test cells]

8/00 Arrangements for selecting an address in a digital store (for stores using transistors G11C 11/407, G11C 11/413; {switching or gating circuits for general use H03K 17/001})
11/06014 (using one such element per bit)
11/06021 (with destructive read-out)
11/06028 [Matrixes]
11/06035 ("bit"-organised, e.g. 2 1/2D, 3D or a similar organisation, i.e. bit core
selection for writing or reading, by at least two coincident partial currents)
11/06042 ("word"-organised, e.g. 2D organisation or linear selection, i.e.
full current selection through all the bit-cores of a word during reading)
11/0605 (with non-destructive read-out)
11/06057 [Matrixes]
11/06064 ("bit"-organised (2 1/2D, 3D or similar organisation))
11/06071 ("word"-organised (2D organisation or linear selection))
11/06078 (using two or more such elements per bit)
11/06085 [Multi-aperture structures or multi-magnetic closed
circuits, each aperture storing a "bit", realised by rods, plates, grids, waffle-irons,(i.e.
grooved plates) or similar devices]
11/06092 [Multi-aperture structures or multi-magnetic closed
circuits using two or more apertures per bit]
11/061 (using elements with single aperture or magnetic
loop for storage, one element per bit, and for destructive read-out
(contains no documents; see G11C 11/06007, G11C 11/06014,
G11C 11/06021, G11C 11/06028))
11/063 bit organised, such as 2 1/2D, 3D
organisation, i.e. for selection of an element by means of at least two coincident
partial currents both for reading and for writing
(contains no documents; see G11C 11/06035)
11/065 word organised, such as 2D organisation, or
linear selection, i.e. for selection of all the elements of a word by means of a single full
current for reading (contains no documents; see G11C 11/06042)
11/067 (using elements with single aperture or
magnetic loop for storage, one element per bit, and for non-destructive read-
out (contains no documents, see G11C 11/0605 - G11C 11/06071))
11/08 using multi-aperture storage elements, e.g.
using transfluxors; using plates incorporating several individual multi-aperture storage
elements (G11C 11/10 takes precedence; using multi-
aperture plates in which each individual aperture forms a storage element
G11C 11/06)
11/10 using multi-axial storage elements
11/12 using tensors; using twistors, i.e. elements in
which one axis of magnetisation is twisted
11/14 using thin-film elements
11/15 using multiple magnetic layers (G11C 11/155
takes precedence)
11/155 with cylindrical configuration
11/16 . . . using elements in which the storage effect is based on magnetic spin effect (e.g., sensors using magnetoresistive multilayer structures G01R 33/093; thin layer magnetic read heads for magnetic discs G11B 5/31; non-reciprocal magnetic elements in waveguides H01P; composition of ferromagnetic material H01F 1/00; gyrators H03H 7/002)

11/161 . . . [details concerning the memory cell structure, e.g., the layers of the ferromagnetic memory cell]

11/165 . . . [Auxiliary circuits]

11/1653 . . . [Address circuits or decoders]

11/1655 . . . [Bit-line or column circuits]

11/1657 . . . [Word-line or row circuits]

11/1659 . . . [Cell access]

11/1673 . . . [Reading or sensing circuits or methods]

11/1675 . . . [Writing or programming circuits or methods]

11/1677 . . . [Verifying circuits or methods]

11/1693 . . . [Timing circuits or methods]

11/1695 . . . [Protection circuits or methods]

11/1697 . . . [Power supply circuits]

11/18 . . . using Hall-effect devices

11/19 . . . using non-linear reactive devices in resonant circuits

11/20 . . . using parametrons (e.g., ferroresonant triggers; with overcritica feedback magnetic amplifiers or similar (pulse generators using parametrons and ferroresonant devices H03K 19/162, H03K 19/164; counters using such elements H03K 23/001])

11/21 . . . using electric elements

11/22 . . . using ferroelectric elements (using multibit ferroelectric storage elements G11C 11/5657; pulse generators using ferroelectric elements H03K 3/45; counters using such elements H03K 23/76)

11/221 . . . [using ferroelectric capacitors]

11/223 . . . [using ferroelectric gate insulating film]

11/225 . . . [Auxiliary circuits]

11/2253 . . . [Address circuits or decoders]

11/2255 . . . [Bit-line or column circuits]

11/2257 . . . [Word-line or row circuits]

11/2259 . . . [Cell access]

11/2273 . . . [Reading or sensing circuits or methods]

11/2275 . . . [Writing or programming circuits or methods]

11/2277 . . . [Verifying circuits or methods]

11/2293 . . . [Timing circuits or methods]

11/2295 . . . [Protection circuits or methods]

11/2297 . . . [Power supply circuits]

11/23 . . . using electrostatic storage on a common layer, e.g., Forrester-Haef tubes, (William tubes) (G11C 11/22 takes precedence; conversion of Williams tubes H01I 31/00)

11/24 . . . using capacitors (G11C 11/22 takes precedence; using a combination of semiconductor devices and capacitors G11C 11/34, e.g., G11C 11/40)

11/26 . . . using discharge tubes (counters using such elements H03K 25/00)

11/265 . . . [counting tubes, e.g., decatrons, trochotrons (counters using such elements H03K 29/00)]

11/28 . . . using gas-filled tubes (counting tubes G11C 11/265; pulse generators, electronic switches, logic circuits using such elements H03K 3/37, H03K 17/52, H03K 19/04)

11/30 . . . using vacuum tubes (counting tubes G11C 11/265; pulse generators, electronic switches, logic circuits using such elements H03K 3/37, H03K 17/52, H03K 19/04)

11/34 . . . using semiconductor devices (processes or apparatus for the manufacture or treatment of semiconductor or solid state devices H01L 21/00; integrated circuit devices H01L 27/00; generating electric pulses, e.g., bistable devices using semiconductor devices H03K 3/40)

11/35 . . . with charge storage in a depletion layer, e.g., charge coupled devices (in shift registers G11C 19/282)

11/36 . . . using diodes, e.g., as threshold elements (i.e., diodes assuming a stable ON-stage when driven above their threshold (S- or N-characteristic))

11/38 . . . using tunnel diodes

11/39 . . . using thyristors (or the avalanche or negative resistance type, e.g., PNPN, SCR, SCS, UJT)

11/40 . . . using transistors

11/401 . . . forming cells needing refreshing or charge regeneration, i.e., dynamic cells

11/402 . . . with charge regeneration individual to each memory cell, i.e. internal refresh

11/4023 . . . [using field effect transistors]

11/4026 . . . [using bipolar transistors]

11/403 . . . with charge regeneration common to a multiplicity of memory cells, i.e. external refresh

11/404 . . . with one charge-transfer gate, e.g., MOS transistor, per cell

11/4045 [using a plurality of serially connected access transistors, each having a storage capacitor]

WARNING

Not complete, see also G11C 11/404

11/405 with three charge-transfer gates, e.g., MOS transistors, per cell

11/406 . . . Management or control of the refreshing or charge-regeneration cycles

11/40603 [Arbitration, priority and concurrent access to memory cells for read/write or refresh operations]

11/40607 [Refresh operations in memory devices with an internal cache or data buffer]

11/40611 [External triggering or timing of internal or partially internal refresh operations, e.g. auto-refresh or CAS-before-RAS triggered refresh]

11/40615 [Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs]

11/40618 [Refresh operations over multiple banks or interleaving]

11/40622 [Partial refresh of memory arrays]

11/40626 [Temperature related aspects of refresh operations]
Schmitt trigger regeneration, e.g. bistable multivibrator or { static } cells with positive feedback, image memory G11C 7/20

Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing

for memory cells of the bipolar type

for memory cells of the field-effect type

Circuits for initialisation, powering up or down, clearing memory or presetting

Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits

Timing circuits (for regeneration management G11C 11/406)

Safety or protection circuits, e.g. for preventing inadvertent or unauthorised reading or writing; Status cells; Test cells (protection of memory contents during checking or testing G11C 29/52)

Address circuits

[Address Buffers; level conversion circuits]

[Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge]

[Address decoders, e.g. bit- or word line decoders; Multiple line decoders]

Read-write [R-W] circuits

Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating

Input/output [I/O] data interface arrangements, e.g. data buffers

Bit-line management or control circuits

Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches

Bit-line organisation, e.g. bit-line layout, folded bit lines

Dummy cell treatment; Reference voltage generators

forming [static] cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger

using bipolar transistors only

{with at least one cell access to base or collector of at least one of said transistors, e.g. via access diodes, access transistors}

{with at least one cell access via separately connected emitters of said transistors or via multiple emitters, e.g. T2L, ECL}

using field-effect transistors only { (latent image memory G11C 7/20; multi-port cells G11C 8/16) }

{Cells incorporating circuit means for protection against loss of information (in general G11C 5/005) }

Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction (in general G11C 5/00 - G11C 8/00)

for memory cells of the bipolar type

Address circuits

Read-write [R-W] circuits

for memory cells of the field-effect type

Address circuits

Read-write [R-W] circuits

using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically - or optically - [feedback -] coupled

using superconductive elements, e.g. cryotron

using thermoplastic elements

using displacable coupling elements, e.g. ferromagnetic cores, to produce change between different states of mutual or self-inductance [(contains no documents; see G11C 17/00 and subgroups)]

using actuation of electric contacts to store the information (mechanical stores G11C 25/00; switches providing a selected number of consecutive operations of the contacts by a single manual actuation of the operating part H01H 41/00)

using electromagnetic relays

using elements simulating biological cells, e.g. neuron

using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency (counting arrangements comprising multi-stable elements of this type H03K 25/00, H03K 29/00)

using magnetic storage elements

{using conductive bridging RAM [CBRAM] or programming metallization cells [PMC]}

using charge storage in a floating gate

{Programming or writing circuits; Data input circuits}

[Erasing circuits]

[Sensing or reading circuits; Data output circuits]

{using capacitive charge storage elements}

{using ferroelectric storage elements}

{using organic memory material storage elements}

{using charge trapping in an insulator}

{using amorphous/crystalline phase transition storage elements}

{using storage elements comprising metal oxide memory material, e.g. perovskites}

{read-only digital stores using storage elements with more than two stable states}

Digital stores characterised by the use of storage elements not covered by groups G11C 11/00, G11C 23/00 - G11C 25/00

{using resistive RAM [RRAM] elements}

{comprising amorphous/crystalline phase transition cells}

{comprising metal oxide memory material, e.g. perovskites}

{RRAM elements whose operation depends upon chemical change}
14/00 Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down

14/009 . . . [in which the volatile element is a DRAM cell]
14/0018 . . . [whereby the nonvolatile element is an EEPROM element, e.g. a floating gate or nitride-oxide-silicon [MNOS] transistor]
14/0027 . . . [and the nonvolatile element is a ferroelectric element]
14/0036 . . . [and the nonvolatile element is a magnetic RAM [MRAM] element or ferromagnetic cell]
14/0045 . . . [and the nonvolatile element is a resistive RAM element, i.e. programmable resistors, e.g. formed of phase change or chalcogenide material]
14/0054 . . . [in which the volatile element is a SRAM cell]
14/0063 . . . [and the nonvolatile element is an EEPROM element, e.g. a floating gate or MNOS transistor]
14/0072 . . . [and the nonvolatile element is a ferroelectric element]
14/0081 . . . [and the nonvolatile element is a magnetic RAM [MRAM] element or ferromagnetic cell]
14/009 . . . [and the nonvolatile element is a resistive RAM element, i.e. programmable resistors, e.g. formed of phase change or chalcogenide material]

13/0097 . . . [Erasing, e.g. resetting, circuits or methods]
13/002 . . . using elements whose operation depends upon chemical change ([G11C 13/0009 takes precedence]); using electrochemical charge ([G11C 11/00])
13/0025 . . . [using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes]
13/004 . . . using optical elements [using other beam accessed elements, e.g. electron, ion beam [using electrostatic memory tubes G11C 11/23; recording of television signals H04N 5/76]]
13/0041 . . . [using photochromic storage elements (G11C 13/042 takes precedence)]
13/0042 . . . [using information stored in the form of an interference pattern (hologram, lippman; holography G03H 502B 5/32)]
13/0043 . . . [using magnetic-optical storage elements]
13/0044 . . . [using electro-optical elements]
13/0045 . . . [using photochromic storage elements]
13/0046 . . . [using other storage elements storing information in the form of an interference pattern]
13/0047 . . . [using electro-optical elements (G11C 13/042 takes precedence)]
13/0048 . . . [using other optical storage elements]
13/006 . . . using magneto-optical elements ([G11C 13/042 takes precedence] magneto-optics in general G02E)

13/0033 . . . [Disturbance prevention or evaluation; Refreshing of disturbed memory data]
13/0035 . . . [Evaluating degradation, retention or wearout, e.g. by counting writing cycles]
13/0038 . . . [Power supply circuits]
13/004 . . . [Reading or sensing circuits or methods]
2013/0042 . . . [Read using differential sensing, e.g. bit line [BL] and bit line bar [BLB]]
2013/0045 . . . [Read using current through the cell]
2013/0047 . . . [Read destroying or disturbing the data]
2013/005 . . . [Read using potential difference applied between cell electrodes]
2013/0052 . . . [Read process characterized by the shape, e.g. form, length, amplitude of the read pulse]
2013/0054 . . . [Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell]
2013/0057 . . . [Read done in two steps, e.g. wherein the cell is read twice and one of the two read values serving as a reference value]
13/0059 . . . [Security or protection circuits or methods]
13/0061 . . . [Timing circuits or methods]
13/0064 . . . [Verifying circuits or methods]
2013/0066 . . . [Verify correct writing whilst writing is in progress, e.g. by detecting onset or cessation of current flow in cell and using the detector output to terminate writing]
13/0069 . . . [Writing or programming circuits or methods]
2013/0071 . . . [Write using write potential applied to access device gate]
2013/0073 . . . [Write using bi-directional cell biasing]
2013/0076 . . . [Write operation performed depending on read result]
2013/0078 . . . [Write using current through the cell]
2013/008 . . . [Write by generating heat in the surroundings of the memory material, e.g. thermowrite]
2013/0083 . . . [Write to perform initialising, forming process, electro forming or conditioning]
2013/0085 . . . [Write a page or sector of information simultaneously, e.g. a complete row or word line]
2013/0088 . . . [Write with the simultaneous writing of a plurality of cells]
2013/009 . . . [Write using potential difference applied between cell electrodes]
2013/0092 . . . [Write characterized by the shape, e.g. form, length, amplitude of the write pulse]
2013/0095 . . . [Write using strain induced by, e.g. piezoelectric, thermal effects]
Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores (in which information is addressed to a specific location G11C 11/00; selection information using addressing means, e.g. hashing, tree addressing, chaining G06F 11/22; information retrieval systems using a computer G06F 16/00))

16/00 Erasable programmable read-only memories (G11C 14/00 takes precedence)

16/02 electrically programmable { (programmable multibit digital storage elements G11C 11/5621) }

16/04 [comprising threshold transistors, e.g. FAMOS]

16/0408 [comprising cells containing floating gate transistors (G11C 16/0483, G11C 16/0491 take precedence)]

16/0416 [comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM]

16/0425 [comprising cells containing a merged floating gate and select transistor]

16/0433 [comprising cells containing a single floating gate transistor and one or more separate select transistors]

16/0441 [comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates]

16/045 [Floating gate memory cells with both P and N channel memory transistors, usually sharing a common floating gate]

16/0458 [comprising plural independent floating gates which store independent data (for storage of more than two stable states at a single floating gate G11C 11/5621)]

16/0466 [comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] (G11C 16/0483, G11C 16/0491 take precedence)]

16/0475 [comprising plural independent storage sites which store independent data (for storage of more than two stable states at a single storage site G11C 11/5621)]

16/0483 [comprising cells having several storage transistors connected in series]

16/0491 [Virtual ground arrays]

16/06 Auxiliary circuits, e.g. for writing into memory (in general G11C 7/00)

16/08 Address circuits; Decoders; Word-line control circuits

16/10 Programming or data input circuits

16/102 [External programming circuits, e.g. EPROM programmers; In-circuit programming or reprogramming; EPROM emulators]

16/105 [Circuits or methods for updating contents of nonvolatile memory, especially with 'security' features to ensure reliable replacement, i.e. preventing that old data is lost before new data is reliably written]

16/107 [Programming all cells in an array, sector or block to the same state prior to flash erasing]

16/12 Programming voltage switching circuits

16/14 Circuits for erasing electrically, e.g. erase voltage switching circuits

16/16 for erasing blocks, e.g. arrays, words, groups

16/18 Circuits for erasing optically

16/20 Initialising; Data preset; Chip identification

16/22 Safety or protection circuits preventing unauthorised or accidental access to memory cells

16/225 [Preventing erasure, programming or reading when power supply voltages are outside the required ranges]

16/24 Bit-line control circuits

16/26 Sensing or reading circuits; Data output circuits

16/28 using differential sensing or reference cells, e.g. dummy cells

16/30 Power supply circuits

16/32 Timing circuits

16/34 Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention

16/3404 [Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells]

16/3409 [Circuits or methods to recover overerased nonvolatile memory cells detected during erase verification, usually by means of a "soft" programming step]

16/3413 [Circuits or methods to recover overprogrammed nonvolatile memory cells detected during program verification, usually by means of a "soft" erasing step]

16/3418 [Disturbance prevention or evaluation; Refreshing of disturbed memory data]

16/3422 [Circuits or methods to evaluate read or write disturbance in nonvolatile memory, without steps to mitigate the problem]

16/3427 [Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written]

16/3431 [Circuits or methods to detect disturbed nonvolatile memory cells, e.g. which still read as programmed but with threshold less than the program verify threshold or read as erased but with threshold greater than the erase verify threshold, and to reverse the disturbance via a refreshing programming or erasing step]

16/3436 [Arrangements for verifying correct programming or erasure]

16/344 [Arrangements for verifying correct erasure or for detecting overerased cells]

16/3445 [Circuits or methods to verify correct erasure of nonvolatile memory cells]
16/345 {Circuits or methods to detect overerased nonvolatile memory cells, usually during erasure verification}
16/3454 {Arrangements for verifying correct programming or for detecting overprogrammed cells}
16/3459 {Circuits or methods to verify correct programming of nonvolatile memory cells}
16/3463 {Circuits or methods to detect overprogrammed nonvolatile memory cells, usually during program verification}
16/3468 {Prevention of overerasure or overprogramming, e.g. by verifying whilst erasing or writing}
16/3472 {Circuits or methods to verify correct erasure of nonvolatile memory cells whilst erasing is in progress, e.g. by detecting onset or cessation of current flow in cells and using the detector output to terminate erasure}
16/3477 {Circuits or methods to prevent overerasing of nonvolatile memory cells, e.g. by detecting onset or cessation of current flow in cells and using the detector output to terminate erasure}
16/3481 {Circuits or methods to verify correct programming of nonvolatile memory cells whilst programming is in progress, e.g. by detecting onset or cessation of current flow in cells and using the detector output to terminate programming}
16/3486 {Circuits or methods to prevent overprogramming of nonvolatile memory cells, e.g. by detecting onset or cessation of current flow in cells and using the detector output to terminate programming}
16/349 {Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles}
16/3495 {Circuits or methods to detect or delay wearout of nonvolatile EPROM or EEPROM memory devices, e.g. by counting numbers of erase or reprogram cycles, by using multiple memory areas serially or cyclically}

17/00 Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards ((multibit read-only memories G11C11/5622; erasable programmable read-only memories G11C16/00; coding, decoding or code conversion, in general H03M 1; combination of ROM and RAM G11C11/005; G11C14/00; for electrical control of combustion engines F02D41/2406))
17/005 . . . [with a storage element common to a large number of data, e.g. perforated card (G11C17/02, G11C17/04 take precedence)]
17/02 . . . using magnetic or inductive elements (G11C17/14 takes precedence)
17/04 . . . using capacitive elements (G11C17/06, G11C17/14 take precedence)
17/06 . . . using diode elements (G11C17/14 takes precedence)
17/08 . . . using semiconductor devices, e.g. bipolar elements (G11C17/06, G11C17/14 take precedence)
17/10 . . . in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM
17/12 . . . using field-effect devices
17/123 [comprising cells having several storage transistors connected in series]
17/126 [Virtual ground arrays]
17/14 . . . in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
17/143 . . . [using laser-fusible links]
17/146 . . . [Write once memory, i.e. allowing changing of memory content by writing additional bits]
17/16 . . . using electrically-fusible links
17/165 [Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses (digital stores using resistance random access memory elements G11C13/0002)]
17/18 . . . Auxiliary circuits, e.g. for writing into memory (in general G11C7/00)
19/00 Digital stores in which the information is moved stepwise, e.g. shift register (counting chains H03K23/00) (stack stores, push-down stores (linear pulse counters H03K23/54; pulse distributors H03K5/15, methods and arrangements for shifting data G06F5/01))
19/005 . . . [with ferro-electric elements (condensers)]
19/02 . . . using magnetic elements (G11C19/14 takes precedence)
19/04 . . . using cores with one aperture or magnetic loop
19/06 . . . using structures with a number of apertures or magnetic loops, e.g. transfluxors (laddic)
19/08 . . . using thin films in plane structure ((thin magnetic films and apparatus or processes specially adapted for manufacturing or assembling the same H01F10/00, H01F4/14))
19/0808 [using magnetic domain propagation]
19/0816 [using a rotating or alternating coplanar magnetic field]
19/0825 [using a variable perpendicular magnetic field]
19/0833 [using magnetic domain interaction]
19/0841 [using electric current]
19/085 [Generating magnetic fields therefor, e.g. uniform magnetic field for magnetic domain stabilisation (coil construction H01F5/00; electromagnets H01F7/00)]
19/0858 [Generating, replicating or annihilating magnetic domains (also comprising different types of magnetic domains, e.g. “Hard Bubbles”) (G11C19/0866 takes precedence)]
19/0866 [Detecting magnetic domains (measuring or detecting magnetic fields in general G01R33/02)]
21/00 Digital stores in which the information circulates {continuously} (stepwise G11C 19/00)

21/005 . . (using electrical delay line (construction of such lines H03H 7/30, H03H 11/26))

21/02 . . using electromechanical delay lines, e.g. using a mercury tank (construction of such lines H03H 9/00)

21/023 . . using piezo-electric transducers, e.g. mercury tank

21/026 . . (using magnetostriction transducers, e.g. nickel delay line)

23/00 Digital stores characterised by movement of mechanical parts to effect storage, e.g. using balls; Storage elements therefor (storing by actuating contacts G11C 11/50)

25/00 Digital stores characterised by the use of flowing media; Storage elements therefor (multiple fluid-circuit element arrangements for performing digital operations F15C 1/12)

27/00 Electric analogue stores, e.g. for storing instantaneous values (integrating circuits acting as stores G06G 7/18; pulse counters with step by step integration and static storage H03K 25/00)

27/005 . . [with non-volatile charge storage, e.g. on floating gate or MNOS]

27/02 . . Sample-and-hold arrangements (G11C 27/04 takes precedence; sampling electrical signals, in general H03K)

27/022 . . [using a magnetic memory element]

27/024 . . [using a capacitive memory element (G11C 27/04 takes precedence]

27/026 . . [associated with an amplifier (G11C 27/028 takes precedence)]

27/028 . . [Current mode circuits, e.g. switched current memories]

27/04 . . Shift registers (charged coupled devices per se H01L 29/76)

29/00 Checking stores for correct operation (Subsequent repair); Testing stores during standby or offline operation (testing of electronic circuits in general G01R 31/28; error detection or error correction in computer memories during normal operation G06F 11/1008, G06F 11/1666; testing of computers during standby G06F 11/22)

29/003 . . [in serial memories]

29/006 . . [at wafer scale level, i.e. WSI (for test and configuration during manufacture H01L 22/00)]

29/02 . . Detection or location of defective auxiliary circuits, e.g. defective refresh counters

29/021 . . [in voltage or current generators]

29/022 . . [in I/O circuitry]

29/023 . . [in clock generator or timing circuitry]

29/024 . . [in decoders]

29/025 . . [in signal lines]

29/026 . . [in sense amplifiers]

29/027 . . [in fuses]

29/028 . . [with adaption or trimming of parameters]

29/04 . . Detection or location of defective memory elements (e.g. cell constructo details, timing of test signals)

29/041 . . [in embedded memories]

29/042 . . [during or with feedback to manufacture]

29/043 . . [comprising complete test loop]

29/047 . . [on power on]

29/049 . . [Online test]

29/0411 . . [Online error correction]

29/06 . . Acceleration testing

29/08 . . Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
Test algorithms, e.g. memory scan [MScan] algorithms; Test patterns, e.g. checkerboard patterns

Built-in arrangements for testing, e.g. built-in self testing [BIST] [or interconnection details]

[comprising voltage or current generators]

[comprising I/O circuitry]

[comprising clock generation or timing circuitry]

[Word line control]

[Bit line control]

[Location of test circuitry on chip or wafer]

[Error catch memory]

Implementation of control logic, e.g. test mode decoders

using microprogrammed units, e.g. state machines

Address generation devices; Devices for accessing memories, e.g. details of addressing circuits

[Address decoder]

[Manipulation of word size]

[Address conversion or mapping, i.e. logical to physical address]

using counters or linear-feedback shift registers [LSFR]

Accessing serial memories

Accessing extra cells, e.g. dummy cells or redundant cells

Accessing multiple arrays (G11C 29/24 takes precedence)

[Concurrent test]

Dependent multiple arrays, e.g. multi-bit arrays

Accessing single arrays

Serial access; Scan testing

[Scan chain]

Accessing multiple bits simultaneously

Data generation devices, e.g. data inverters

[Pattern generator]

Response verification devices

using compression techniques

[Comparison of products, i.e. test results of chips or with golden chip]

using error correcting codes [ECC] or parity check

Indication or identification of errors, e.g. for repair

{self repair}

[Internal storage of test result, quality data, chip identification, repair information]

Test trigger logic

Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths (external testing equipment G11C 29/56)

Marginal testing, e.g. race, voltage or current testing

[threshold voltage]

[impedance]

[impedance]

{of retention}
Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store

- Isolation gates, i.e. gates coupling bit lines to the sense amplifier
- Transfer gates, i.e. gates coupling the sense amplifier output to data lines, I/O lines or global bit lines
- Register arrays
- Sense amplifier related aspects
- Sense amplifier enabled by a address transition detection related control signal
- Current sense amplifiers
- Sense amplifier drivers
- Frequency reading type sense amplifier
- Integrator type sense amplifier
- Aspects relating to interfaces of memory device to external buses
- Analog or multilevel bus
- Compression or decompression of data before storage
- Embedded memory devices, e.g. memories with a processing device on the same die or ASIC memory designs
- Aspects related to pads, pins or terminals
- Serial-parallel conversion of data or prefetch
- Wide data ports
- Equalization of bit lines
- Solid state audio (deprecated, only for historical reasons, G06F 3/16, G11B)
- Control and timing of internal memory operations
- Concurrent read and write (for multi-port memory G11C 7/1075)
- Late write
- Standby or low power modes
- Copy
- Memory devices with an internal cache buffer
- Calibration
- Write conditionally, e.g. only if new data and old data differ
- Latency related aspects
- Timing of a read operation (sense amplifier timing G11C 7/06, G11C 7/08)
- Timing of a write operation (sense amplifier timing G11C 7/06, G11C 7/08)

Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements thereof

- Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
- Memory devices with multiple cells per bit, e.g. twin-cells
- Memory devices with silicon-on-insulator cells
- Refreshing of dynamic cells
- Calibration or ate or cycle tuning
- Parity or ECC in refresh operations
- Interleaved refresh operations
- Low level details of refresh operations
- Pseudo-SRAMs
- Refresh in standby or low power modes
- Voltage or leakage in refresh operations
- Indexing scheme relating to G11C 11/56 and sub-groups for features not covered by these groups
- Multilevel memory cell aspects
- Multilevel memory cell with more than one control gate
- Multilevel memory cell with more than one floating gate
- Multilevel memory cell with additional gates, not being floating or control gates
- Multilevel memory cell comprising negative resistance, quantum tunneling or resonance tunneling elements
- Multilevel magnetic memory cell using non-magnetic non-conducting interlayer, e.g. MTJ
- Multilevel magnetic memory cell using non-magnetic conducting interlayer, e.g. GMR, SV, PSV
- Multilevel ROM cell programmed by source, drain or gate contacting
- Multilevel memory programming aspects
- Multilevel programming verification
- Concurrent multilevel programming of more than one cell
- Concurrent multilevel programming and reading
- Concurrent multilevel programming and programming verification
- Self-converging multilevel programming
- Multilevel memory reading aspects
- Concurrent multilevel reading of more than one cell
- Multilevel reading using successive approximation
- Mixed concurrent serial multilevel reading
- Reference cells
- Multilevel memory having cells with different number of storage levels
- Multilevel memory with buffers, latches, registers at input or output
- Multilevel memory comprising cache storage devices
- Multilevel memory comprising counting devices
- Multilevel memory with current-mirror arrangements
- Multilevel memory with flag bits, e.g. for showing that a "first page" of a word line is programmed but not a "second page"
- Multilevel memory with bit inversion arrangement
- Multilevel memory programming, reading or erasing operations wherein the order or sequence of the operations is relevant
Indexing scheme relating to G11C 13/00 for features not covered by this group

Resistive cells; Technology aspects

Metal ion trapping, i.e. using memory material including cavities, pores or spaces in form of tunnels or channels wherein metal ions can be trapped but do not react and form an electrode or another layer during a write operation, e.g. trapping, doping

Non-metal ion trapping, i.e. using memory material trapping non-metal ions given by the electrolyte or another layer during a write operation, e.g. trapping, doping

Dissociation, i.e. using memory material including molecules which, during a write operation, are dissociated in ions which migrate further in the memory material

Use of different molecule structures as storage states, e.g. part of molecule being rotated

Current-voltage curve

Memory cell being a nanotube, e.g. suspended nanotube

Memory cell being a nanowire transistor

Memory cell being a nanowire having RADIAL composition

Memory cell comprising at least a nanowire and only two terminals

Resistive cell, memory material aspects

Material having complex metal oxide, e.g. perovskite structure

Material having simple binary metal oxide structure

Material including silicon

Material includes an oxide or a nitride

Material including carbon, e.g. graphite, graphene

Resistive cell structure aspects

Structure including a barrier layer preventing or limiting migration, diffusion of ions or charges or formation of electrolytes near an electrode

Structure characterized by the electrode material, shape, etc.

Structure wherein the resistive material being in a transistor, e.g. gate

Structure including a tunneling barrier layer, the memory effect implying the modification of tunnel barrier conductivity

Structure including two electrodes, a memory active layer and at least two other layers which can be a passive or source or reservoir layer or a less doped memory active layer

Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way

Resistive array aspects

Three dimensional array

Array wherein the access device being a diode

Array where access device function, e.g. diode function, being merged with memorizing function of memory element

Array wherein each memory cell has more than one access device

Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor

Array using an access device for each cell which being not a transistor and not a diode

Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Array wherein the memory cells of a group share an access device, all the memory cells of the group having a common electrode and the access device being not part of a word line or a bit line driver

Array wherein the access device being a transistor

Array wherein the substrate, the cell, the conductors and the access device are all made up of organic materials

Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires

Array having, for accessing a cell, a word line, a bit line and a plate or source line receiving different potentials

Indexing scheme relating to G11C 16/00 and subgroups, for features not directly covered by these groups

Structural aspects of erasable programmable read-only memories

Nonvolatile memory cell provided with a separate control gate for erasing the cells, i.e. erase gate, independent of the normal read control gate

Floating gate cells in which the floating gate consists of multiple isolated silicon islands, e.g. nanocrystals

Nonvolatile memory wherein data storage is accomplished by storing relatively few electrons in the storage layer, i.e. single electron memory

Floating gate memory cells with a single poly-silicon layer

Reading and writing aspects of erasable programmable read-only memories

Circuits or methods to write a page or sector of information simultaneously into a nonvolatile memory, typically a complete row or word line in flash memory

Flash programming of all the cells in an array, sector or block simultaneously

Flash erase of all the cells in an array, sector or block simultaneously

Suspension of programming or erasing cells in an array in order to read other cells in it

Nonvolatile memory in which reading can be carried out from one memory bank or array whilst a word or sector in another bank or array is being erased or programmed simultaneously
Nonvolatile memory in which programming can be carried out in one memory bank or array whilst a word or sector in another bank or array is being erased simultaneously.

Floating gate memory which is adapted to be one-time programmable [OTP], e.g. containing multiple OTP blocks permitting limited update ability.

Floating gate memory programmed by reverse programming, e.g. programmed with negative gate voltage and erased with positive gate voltage or programmed with high source or drain voltage and erased with high gate voltage.

Reduction of number of input/output pins by using a serial interface to transmit or receive addresses or data, i.e. serial access memory.

Indexing scheme relating to checking stores for correct operation, subsequent repair or testing stores during standby or offline operation.

Indexing scheme relating to G11C 29/70, for implementation aspects of redundancy repair.

Location of redundancy information.

Redundancy information stored in a part of the memory core to be repaired.

Redundancy information loaded from the outside into the memory.

Time at which the repair is done.

After packaging.

Before packaging.

Storage technology used for the repair.

E-fuses, e.g. electric fuses or antifuses, floating gate transistors.

Laser fuses.